【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
【答案】(1)詳見(jiàn)解析(2)不等式的解集為[0,1].
【解析】試題分析:(1)先根據(jù)奇函數(shù)定義求 上解析式,最后根據(jù)分段函數(shù)形式寫(xiě)函數(shù)(2)根據(jù)分段函數(shù)單調(diào)性可化簡(jiǎn)不等式為二次不等式,與定義域限制條件聯(lián)立方程組,解得不等式解集
試題解析:(1)設(shè)-1≤x≤0,則0≤-x≤1,∴f(-x)=2-x+ln(1-x)-1=+ln(1-x)-1
又f(x)是奇函數(shù),∴f(-x)=-f(x),
f(x)=-f(-x)=--ln(1-x)+1
∴f(x)= f(x)在[-1,1]上是增函數(shù).
(2)∵f(x)在[-1,1]上是增函數(shù),
由已知得:f(2x-1)≥f(x2-1),
等價(jià)于 .
∴0≤x≤1,∴不等式的解集為[0,1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-f′(0)ex+2x,點(diǎn)P為曲線y=f(x)在點(diǎn)(0,f(0))處的切線l上的一點(diǎn),點(diǎn)Q在曲線y=ex上,則|PQ|的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱(chēng)為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是雙曲線的左右焦點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn),與雙曲線交于點(diǎn),且均在第一象限,當(dāng)直線時(shí),雙曲線的離心率為,若函數(shù),則()
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某互聯(lián)網(wǎng)理財(cái)平臺(tái)為增加平臺(tái)活躍度決定舉行邀請(qǐng)好友拿獎(jiǎng)勵(lì)活動(dòng),規(guī)則是每邀請(qǐng)一位好友在該平臺(tái)注冊(cè),并購(gòu)買(mǎi)至少1萬(wàn)元的12月定期,邀請(qǐng)人可獲得現(xiàn)金及紅包獎(jiǎng)勵(lì),現(xiàn)金獎(jiǎng)勵(lì)為被邀請(qǐng)人理財(cái)金額的,且每邀請(qǐng)一位最高現(xiàn)金獎(jiǎng)勵(lì)為300元,紅包獎(jiǎng)勵(lì)為每邀請(qǐng)一位獎(jiǎng)勵(lì)50元.假設(shè)甲邀請(qǐng)到乙、丙兩人,且乙、丙兩人同意在該平臺(tái)注冊(cè),并進(jìn)行理財(cái),乙、丙兩人分別購(gòu)買(mǎi)1萬(wàn)元、2萬(wàn)元、3萬(wàn)元的12月定期的概率如下表:
理財(cái)金額 | 萬(wàn)元 | 萬(wàn)元 | 萬(wàn)元 |
乙理財(cái)相應(yīng)金額的概率 | |||
丙理財(cái)相應(yīng)金額的概率 |
(1)求乙、丙理財(cái)金額之和不少于5萬(wàn)元的概率;
(2)若甲獲得獎(jiǎng)勵(lì)為元,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;
(2)若是 成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)P在線段AD1上運(yùn)動(dòng),給出以下命題:
①異面直線C1P與B1C所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
④異面直線A1P與BC1間的距離為定值.
其中真命題的個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點(diǎn)M在線段PC上,PM=tPC,試確定實(shí)數(shù)t的值,使得PA∥平面MQB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若向量與向量的夾角為鈍角, ,且當(dāng)時(shí), ()取最小值,向量滿(mǎn)足 ,則當(dāng) 取最大值時(shí), 等于( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com