,點M在AB上且,點N在AC上,聯(lián)結MN,使△AMN與原三角形相似,則AN=___________

試題分析:因為AB=9,AC=6,AM=3,
若△AMN∽△ABC,則,即解得AN=2;
若△AMN∽△ACB,則,即解得AN=
故AN=2或
點評:本小題可能有兩種相似情況,所以有兩組解,不要漏解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知與圓相切于點,直徑 ,連結于點.

(1)求證:
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是圓的兩條平行弦,,、交圓于,過點的切線交的延長線于,,

(1)求的長;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖甲,四邊形是等腰梯形,.由4個這樣的等腰梯形可以拼出圖乙所示的平行四邊形,則四邊形度數(shù)為 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(幾何證明選做題) 如圖,⊙O的直徑=6cm,是延長線上的一點,過點作⊙O的切線,切點為,連結,若,則=             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB、CD是⊙O的兩條平行切線,B、D為切點,AC為⊙O的切線,切點為E.過A作AF⊥CD,F(xiàn)為垂足.

(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直角三角形的頂點坐標,直角頂點,頂點軸上,點為線段的中點

(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動圓過點且與圓內(nèi)切,求動圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如右圖,以半圓的一條弦AN為對稱軸將折疊過來和直徑MN交于點B,如
果MB:BN=2:3,且MN=10,則弦AN的長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,PA為0的切線,A為切點,PBC是過點O的割線,PA ="10,PB" =5、

(I)求證:;
(2)求AC的值.

查看答案和解析>>

同步練習冊答案