擲兩枚骰子,求所得的點數(shù)之和為6的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:由題意知本題是一個古典概型,試驗包含的所有事件是擲兩次骰子共有6×6種基本事件,且等可能,滿足條件的事件是其中點數(shù)之和為6的可以通過列舉得到,根據(jù)概率公式得到結(jié)果.
解答: 解:由題意知本題是一個古典概型,
∵試驗包含的所有事件是擲兩次骰子共有36種基本事件,且等可能,
滿足條件的事件是其中點數(shù)之和為6的有(1,5),(2,4),(3,3),(4,2),(5,1)共5種,
∴“所得點數(shù)和為6”的概率為
5
36
點評:學好古典概型可以為其它概率的學習奠定基礎(chǔ),同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題.解題的關(guān)鍵是如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

x
-
1
3x
n的展開式中第四項為常數(shù)項,則n=( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A=(x+1)(x+7),B=(x+4)2,則A與B的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第二象限角,tanα=-
4
3
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={(x,y)||x|+|y|<2},B={(x,y)|x2+y2<r2},若“點(x,y)∈A”是“點(x,y)∈B”的必要不充分條件,則r的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A、y=
1
x
B、y=2x
C、y=|x|+1
D、y=-x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在100個零件中,有一級品20個,二級品30個,三級品50個,從中抽取20個作為樣本:
①采用隨機抽樣法,將零件編號為00,01,02,…,99,抽出20個;
②采用系統(tǒng)抽樣法,將所有零件分成20組,每組5個,然后每組中隨機抽取1個;
③采用分層抽樣法,隨機從一級品中抽取4個,二級品中抽取6個,三級品中抽取10個.
則( 。
A、采用不同的抽樣方法,這100個零件中每個被抽到的概率各不相同
B、①②兩種抽樣方法,這100個零件中每個被抽到的概率都是
1
5
,③并非如此
C、①③兩種抽樣方法,這100個零件中每個被抽到的概率都是
1
5
,②并非如此
D、不論采取哪種抽樣方法,這100個零件中每個被抽到的概率都是
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a=log0.34,b=log34,c=0.32,則a,b,c的大小關(guān)系是(  )
A、a<b<c
B、a<c<b
C、c<b<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期為
3

(1)求ω的值;
(2)求函數(shù)f(x)的在[0,
π
3
]上的值域;
(3)若函數(shù)y=g(x)的圖象是由y=f(x)的圖象向右平移
π
2
個單位長度得到,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案