【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

1)求橢圓C的方程;

2)設(shè)過(guò)點(diǎn)的直線l與橢圓C交于,兩點(diǎn),求的取值范圍.

【答案】1 2

【解析】

1)將點(diǎn)代入橢圓方程,結(jié)合離心率公式,聯(lián)立方程組,求解即可得出橢圓的方程;

討論直線l的斜率為0和不為0兩種情況,當(dāng)直線l的斜率為0時(shí),,得出;

當(dāng)直線l的斜率不為0時(shí),設(shè)出直線l的方程,代入橢圓方程,利用韋達(dá)定理得出,的值,進(jìn)而得出,換元令,得出,由二次函數(shù)的性質(zhì)求出的取值范圍.

解:(1)因?yàn)闄E圓C經(jīng)過(guò)點(diǎn),所以,①

因?yàn)闄E圓C的離心率為,所以,所以.

由①②得,.

故橢圓C的方程為.

2)①當(dāng)直線l的斜率為0時(shí),,所以.

②當(dāng)直線l的斜率不為0時(shí),設(shè)直線l的方程為.

聯(lián)立,整理得

,

設(shè),則,從而

因?yàn)?/span>,所以,即

綜上的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若方程有三個(gè)不同解,則實(shí)數(shù)的取值范圍是___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競(jìng)爭(zhēng)從資源的爭(zhēng)奪轉(zhuǎn)向人才的競(jìng)爭(zhēng).吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù).在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如圖所示.

1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;

2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機(jī)選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=與C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.

1)分別說(shuō)明C1,C2是什么曲線,并求出a與b的值;

(2)設(shè)當(dāng)=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面中,已知點(diǎn),,…,,其中是正整數(shù),對(duì)平面上任一點(diǎn),記關(guān)于點(diǎn)的對(duì)稱點(diǎn),關(guān)于點(diǎn)的對(duì)稱點(diǎn),…,關(guān)于點(diǎn)的對(duì)稱點(diǎn).

1)求向量的坐標(biāo);

2)當(dāng)點(diǎn)在曲線上移動(dòng)時(shí),點(diǎn)的軌跡是函數(shù)的圖像,其中是以3為周期的周期函數(shù),且當(dāng)時(shí),.求以曲線為圖像的函數(shù)在上的解析式;

3)對(duì)任意偶數(shù),用表示向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,分別為,的中點(diǎn), 上異于,的點(diǎn), .

1)證明:平面平面;

2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面四邊形中,,中點(diǎn),,,將沿對(duì)角線折起至,使平面,則四面體中,下列結(jié)論不正確的是(

A.平面

B.異面直線所成的角為

C.異面直線所成的角為

D.直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)設(shè)是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)不同的零點(diǎn),且,

(i)求參數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求直線和曲線的極坐標(biāo)方程;

2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案