【題目】已知函數(shù),若方程有三個(gè)不同解,則實(shí)數(shù)的取值范圍是___________。
【答案】.
【解析】
畫(huà)出函數(shù)f(x)的圖象,求出與有三個(gè)不同的交點(diǎn)時(shí)的臨界值,從而求出a的范圍即可.
由題意知方程有三個(gè)不同解,
即與有三個(gè)不同的交點(diǎn),作出f(x)的圖象,
當(dāng)f′(x)=-2x-2,當(dāng)f′(x)=-2x-2=-2時(shí),解得x=0,
即y=-2x+a與f(x)切于B,不滿足題意;
如圖:再將從右向左平移,當(dāng)過(guò)B(0,1)時(shí),
滿足條件,此時(shí)(0,1)在y=2x-a上,解得a=-1;
將向左平移至與相切時(shí),此時(shí)直線m與f(x)切于A,不滿足條件,
又f′(x)=-2x-2=2,則x=-2,即A(-2,1)在y=2x-a上,解得a=-5,
所以時(shí)滿足題意,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,邊,,所在直線的方程分別為,,.
(1)求邊上的高所在的直線方程;
(2)若圓過(guò)直線上一點(diǎn)及點(diǎn),當(dāng)圓面積最小時(shí),求其標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,
方案一:每滿200元減50元;
方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、l個(gè)白球的甲箱,裝有2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個(gè)數(shù) | 3 | 2 | 1 | 0 |
實(shí)際付款 | 半價(jià) | 7折 | 8折 | 原價(jià) |
(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得半價(jià)優(yōu)惠的概率;
(2)若某顧客購(gòu)物金額為320元,用所學(xué)概率知識(shí)比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫(xiě)出曲線的平面直角坐標(biāo)方程和直線的普通方程:
(2)若成等比數(shù)列,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形和都是直角梯形,,,,,,,是的中點(diǎn)。
(1)求證:;
(2)已知是的中點(diǎn),求證:;
(3)求直線與平面所成角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)f(x)的最小值為8,求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)=|f(x)|+f(x)﹣16有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和交于,兩點(diǎn),點(diǎn),若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)的直線l與橢圓C交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com