解答:
解:(Ⅰ)f′(x)=2x-
=2•
,(x>1),
(1)若a≤1,x>1,則f′(x)>0,
∵f(x)在[1,+∞)上連續(xù),
∴f(x)在[1,+∞)上是單調(diào)遞增函數(shù).
∴當(dāng)a≤1,x≥1時(shí),f(x)
min=f(1)=1,
(2)若a>1,x>1,令f′(x)=0,得x=
,
當(dāng)x∈(1,
)時(shí),f′(x)<0,f(x)在[1,+∞)上連續(xù),f(x)在[1,
)上是單調(diào)遞減函數(shù).
當(dāng)x∈(
,+∞)時(shí),f′(x)>0,f(x)在[
,+∞)上是單調(diào)遞增函數(shù).
則x=
時(shí),f(x)取得最小值.
∴當(dāng)a>1,x≥1時(shí),f(x)
min=a-alna,
∴g(a)=
,
(Ⅱ)記g(x)=x
2-2alnx-2ax,
g′(x)=
(x
2-ax-a),
(1)充分性:若a=
,則g(x)=x
2-lnx-x,
g′x)=
(2x+1)(x-1),
當(dāng)x∈(0,1)時(shí),g′(x)<0,g(x)在(0,1)上是單調(diào)遞減函數(shù);
當(dāng)x∈(1,+∞)時(shí),g′(x)>0,g(x)在(1,+∞)上是單調(diào)遞增函數(shù).
∴當(dāng)x=1時(shí),g(x)
min=g(1)=0,即g(x)≥0,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào).
∴方程f(x)=2ax有唯一解.
(2)必要性:若方程f(x)=2ax有唯一解,即g(x)=0有唯一解.
令g′(x)=0,得x
2-ax-a=0,
∵a>0,x>0,
∴x
1=
(舍),x
2=
,
當(dāng)x∈(0,x
2 )時(shí),g′(x)<0,g(x)在(0,x
2 )上是單調(diào)遞減函數(shù);
當(dāng)x∈(x
2,+∞)時(shí),g′(x)>0,g(x)在(x
2,+∞)上是單調(diào)遞增函數(shù).
∴當(dāng)x=x
2時(shí),g′(x
2)=0,g(x)
min=g(x
2 ),
∵g(x)=0有唯一解,∴g(x
2)=0.
則
,即
| x22-2alnx2-2ax2=0 | x22-ax2-a=0 |
| |
,
∴2alnx
2+ax
2-a=0,
∵a>0,∴2lnx
2+x
2-1=0①,
設(shè)函數(shù)h(x)=2lnx+x-1,
∵在x>0時(shí)h(x)是增函數(shù),∴h(x)=0至多有一解.
∵h(yuǎn)(1)=0,∴方程①的解為x
2=1,即
=1,解得a=
,
由(1)、(2)知,“方程f(x)=2ax有唯一解”的充要條件是“a=
”.