長為3的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動,如果點(diǎn)M是線段AB上一點(diǎn),且
MB
=2
AM

(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的正半軸交于點(diǎn)N,且與直線l:y=kx+m(k≠0)相交于不同的兩點(diǎn)P、Q(不同于點(diǎn)N),若NP⊥NQ,試判斷直線l是否過定點(diǎn)?若是,求出該點(diǎn)的坐標(biāo);若不是,請說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用代入法,根據(jù)
MB
=2
AM
,|AB|=3,可求點(diǎn)M的軌跡C的方程;
(2)直線y=kx+m代入橢圓方程,利用韋達(dá)定理,結(jié)合以AB為直徑的圓過點(diǎn)D(2,0),即可求得結(jié)論.
解答: 解:(1)設(shè)M(x,y),A(x1,0),B(0,y2),則
MB
=2
AM
,
∴(-x,y2-y)=2(x-x1,y),
∴x1=
3
2
x
,y2=3y,
∴|AB|=3,
∴x12+y22=9,
∴曲線C的方程為
x2
4
+y2=1
;   
(2)設(shè)A(x1,y1),B(x2,y2),則N(2,0)
直線y=kx+m代入橢圓方程,消去y可得(3+4k2)x2+8mkx+4(m2-3)=0
∴x1+x2=-
8mk
3+4k2
,x1x2=
4(m2-3)
3+4k2

∴y1y2=(kx1+m)(kx2+m)=
3(m2-4k2)
3+4k2
,
∵NP⊥NQ,
∴kNPkNQ=-1
∴y1y2+x1x2-2(x1+x2)+4=0
3(m2-4k2)
3+4k2
+
4(m2-3)
3+4k2
-2•(-
8mk
3+4k2
)+4=0
∴7m2+16mk+4k2=0
∴m=-2k或m=-
2k
7
,均滿足△=3+4k2-m2>0
當(dāng)m=-2k時(shí),l的方程為y=k(x-2),直線過點(diǎn)(2,0),與已知矛盾;
當(dāng)m=-
2k
7
時(shí),l的方程為y=k(x-
2
7
),直線過點(diǎn)(
2
7
,0),
∴直線l過定點(diǎn),定點(diǎn)坐標(biāo)為(
2
7
,0).
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體的棱長為1,線段B′D′上有兩個(gè)動點(diǎn)E,F(xiàn),EF=
1
2
,則下列結(jié)論中錯(cuò)誤的是(  )
A、AC⊥BE
B、EF∥平面ABCD
C、三棱錐A-BEF的體積為定值
D、異面直線AE,BF所成角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為1的點(diǎn)M到拋物線C焦點(diǎn)F的距離|MF|=2.
(1)試求拋物線C的標(biāo)準(zhǔn)方程;
(2)若直線l與拋物線C相交所得的弦的中點(diǎn)為(2,1),試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A、B兩點(diǎn).
(Ⅰ)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:以AB為直徑的圓過原點(diǎn);
(Ⅲ)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,B(-2,0),C(2,0),△ABC的周長為12,動點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)P、Q為E上兩點(diǎn),
OP
OQ
=0
,過原點(diǎn)O作直線PQ的垂線,垂足為M,證明|OM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),
    ①比較g(x)與g(
1
x
)
的大。
    ②是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對任意x>0成立?若存在,求出x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=
x
-
1
x

(Ⅰ)當(dāng)x≥1時(shí),求f(x)-g(x)的最大值;
(Ⅱ)求證:
x
x-1
lnx
x+1
2
,?x>1恒成立;
(Ⅲ)求證:
n2
2
+
3n
8
n
k=1
1
ln
2k+1
2k-1
n2
2
+
n
2
(n≥2,n∈N).(參考數(shù)據(jù):ln3≈1.1,ln5≈1.6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|.若f(a)=2a,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線與橢圓
x2
9
+
y2
4
=1
交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為P,若直線的斜率為k1,直線OP的斜率為k2,則k1k2等于
 

查看答案和解析>>

同步練習(xí)冊答案