【題目】(1)求過點P(2,3),且在兩坐標軸上的截距相等的直線方程.

(2)已知直線l平行于直線4x+3y-7=0,直線l與兩坐標軸圍成的三角形的周長是15,求直線l的方程.

【答案】(1);(2)

【解析】

(1)分當直線過原點和直線不過原點兩種情況求直線的方程.(2) 設直線l的方程為y=-x+b,再根據(jù)直線l與兩坐標軸圍成的三角形的周長是15得到,解方程即得b的值,即得直線l的方程.

(1)當直線過原點時,過點(2,3)的直線為y=x;

當直線不過原點時,設直線方程為 (a≠0),直線過點(2,3),

解得a=5,所以直線方程為

故過點P(2,3),且在兩坐標軸上的截距相等的直線方程為3x-2y=0和x+y-5=0.

(2)∵直線l與直線4x+3y-7=0平行,

∴kl

設直線l的方程為y=-x+b,

則直線l與x軸的交點為A,與y軸的交點為B(0,b),

∵直線l與兩坐標軸圍成的三角形周長是15,

∴|b|=5,∴b=±5.

∴直線l的方程是y=-x±5,即4x+3y ±15=0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為,直線的參數(shù)方程為為參數(shù)),若交于兩點.

(Ⅰ)求圓的直角坐標方程;

(Ⅱ)設,的值.

【答案】(1);(2)1.

【解析】試題分析:(1)先根據(jù) 將圓的極坐標方程化為直角坐標方程(2)先將直線參數(shù)方程調整化簡,再將直線參數(shù)方程代入圓直角坐標方程,根據(jù)參數(shù)幾何意義得,最后利用韋達定理求解

試題解析:(Ⅰ)由,得,

(Ⅱ)把,

代入上式得,

,則,

.

型】解答
束】
23

【題目】證明:(Ⅰ)已知是正實數(shù),.求證

(Ⅱ)已知,, .求證 中至少有一個是負數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓上任意一點,點與點關于原點對稱,線段的垂直平分線與交于.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDADAB,ABDC,ADDCAP2AB1,點E為棱PC的中點.

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓E的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,取相同單位長度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線l過原點,且它的傾斜角α= ,求l與圓E的交點A的極坐標(點A不是坐標原點);
(2)直線m過線段OA中點M,且直線m交圓E于B、C兩點,求||MB|﹣|MC||的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種大型商品,A,B兩地都有出售,且價格相同,某地居民從兩地之一購得商品后,運回的費用是:每單位距離A地的運費是B地運費的3倍.已知A,B兩地相距10 km,顧客選A或B地購買這件商品的標準是:包括運費和價格的總費用較低.求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內、曲線外的居民應如何選擇購貨地點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網銷售電價表如下:

高峰時間段用電價格表

低谷時間段用電價格表

高峰月用

電量(單

位:千瓦時)

高峰電價

(單位:元/

千瓦時)

低谷月用

電量(單位:

千瓦時)

低谷電價

(單位:元/

千瓦時)

50及以下

的部分

0.568

50及以下

的部分

0.288

超過 50 至

200 的部分

0.598

超過 50 至

200 的部分

0.318

超過200

的部分

0.668

超過 200

的部分

0.388

若某家庭5月份的高峰時間段用電量為 200 千瓦時,低谷時間段用電量為 100 千瓦時,則按這種計費方式該家庭本月應付的電費為____________元.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產品生產廠家根據(jù)以往的生產銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產產品(百臺),其總成本為G()(萬元),其中固定成本為萬元,并且每生產百臺的生產成本為萬元(總成本 = 固定成本 + 生產成本);銷售收入R()(萬元)滿足:,假定該產品產銷平衡,那么根據(jù)上述統(tǒng)計規(guī)律:

(Ⅰ)要使工廠有贏利,產量應控制在什么范圍?

(Ⅱ)工廠生產多少臺產品時,可使贏利最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)時,若,且對任意的,都存在,使得成立,求實數(shù)a的取值范圍;

(2)時,求x的取值范圍.

查看答案和解析>>

同步練習冊答案