【題目】已知函數(shù)

(1)求的單調區(qū)間;

(2)若, 在區(qū)間恒成立,求a的取值范圍.

【答案】(1)時, 是增區(qū)間, 時,增區(qū)間是,減區(qū)間是, 時,增區(qū)間是,減區(qū)間是;(2).

【解析】試題(1)先求函數(shù)導數(shù),根據a的范圍討論導函數(shù)在定義區(qū)間上零點,根據導函數(shù)零點情況確定導函數(shù)符號變化情況,最后根據導函數(shù)符號確定單調區(qū)間,(2)作差函數(shù),求導,根據基本不等式確定導函數(shù)恒大于零,根據函數(shù)單調性確定最小值,根據最小值非負得a的取值范圍.

試題解析:(1) 的定義域為.

,

(1)若,則單調增加.

(ii)若,而,故,則當時, ;

時, ;故單調減少,在單調增加.

(iii)若,即,同理可得單調減少,在單調遞增.

(2)由題意得恒成立.設, 則 ,所以在區(qū)間上是增函數(shù),只需 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.

(1)求橢圓的方程;

(2)設直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預測如下.

甲說:“、同時獲獎.”

乙說:“、不可能同時獲獎.”

丙說:“獲獎.”

丁說:“至少一件獲獎”

如果以上四位同學中有且只有兩位同學的預測是正確的,則獲獎的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={xy|x-42+y2=1},B={x,y|x-t2+y-at+22=1},如果命題tR,AB是真命題,則實數(shù)a的取值范圍是( 。

A.B.

C.D.,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為’(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求的直角坐標方程;

(2)已知直線軸交于點,且與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為,點在橢圓上,且滿足,當變化時,給出下列三個命題:

①點的軌跡關于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點僅有兩個,

其中,所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C的離心率是,過焦點且垂直于x軸的直線被橢圓截得的弦長為

求橢圓C的方程;

過點的動直線l與橢圓C相交于A,B兩點,在y軸上是否存在異于點P的定點Q,使得直線l變化時,總有?若存在,求點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列、、、、,若不改變,僅改變、、中部分項的符號(可以都不改變),得到的新數(shù)列稱為數(shù)列的一個生成數(shù)列,如僅改變數(shù)列、、、、的第二、三項的符號,可以得到一個生成數(shù)列:、、、.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項和.

1)寫出的所有可能的值;

2)若生成數(shù)列的通項公式為,求;

3)用數(shù)學歸納法證明:對于給定的,的所有可能值組成的集合為.

查看答案和解析>>

同步練習冊答案