【題目】首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以節(jié)能減排,綠色生態(tài)為主題,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新式藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元.

(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?

【答案】(1)300(2)最大利潤為35000元

【解析】

試題分析:(1)每噸的平均處理成本為,因為,所以可根據(jù)基本不等式求最值,注意等于號取法(2)每月獲利為,這是一個二次函數(shù)利用對稱軸與定義區(qū)間位置關(guān)系求最值

試題解析:解:(1)由題意可知,二氧化碳每噸的平均處理成本為

當(dāng)且僅當(dāng),即時等號成立,

故該單位月處理量為300噸時,才能使每噸的平均處理成本最低,最低成本為100元

(2)獲利,設(shè)該單位每月獲利為元,則

因為,所以

故該單位每月獲利,最大利潤為35000元.1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面為菱形,平面,點在棱上.

(Ⅰ)求證:直線平面;

(Ⅱ)若平面,求證:;

(Ⅲ)是否存在點,使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

(1)求的解析式;

(2)設(shè),證明:函數(shù)圖象上任一點處的切線與兩坐標(biāo)軸所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣6x+8,x∈[1,a],并且函數(shù)f(x)的最小值為f(a),則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【廣西南寧2017屆高三檢測】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.

(1)已知、,三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求,的值;

(2)該電子商務(wù)平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱 中,側(cè)面和側(cè)面都是矩形, 是邊長為的正三角形, 分別為的中點.

(1)求證: 平面

(2)求證:平面平面.

(3)若平面,求棱的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,(1)已知a,bB=45°,求A、C、c;

(2)已知sin A∶sin B∶sin C=(+1)∶(-1)∶,求最大角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有三支股票, ,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人數(shù)是持有股票的人數(shù)的2倍.在持有股票的人中,只持有股票的人數(shù)比除了持有股票外,同時還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有股票.則只持有股票的股民人數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點,且圓心在直線上,又直線與圓C交于P,Q兩點.

1)求圓C的方程;

2)若,求實數(shù)的值;

(3)過點作直線,且交圓CM,N兩點,求四邊形的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案