【題目】已知為常數(shù), ,函數(shù),且方程有等

根.

(1)求的解析式及值域;

(2)設集合,,若,求實數(shù)的取值范圍;

(3)是否存在實數(shù),使的定義域和值域分別為?若存在,求

的值;若不存在,說明理由.

【答案】(1)(2)(3)存在

【解析】分析:(1)由函數(shù)的解析式、f(2)=0,且方程f(x)=x有等根,求得a、b的值,可得f(x)的解析式.再利用二次函數(shù)的性質(zhì)求得函數(shù)的值域.

(2)由題意可得AB,分當A=時、當A時兩種情況,分別利用二次函數(shù)的性質(zhì)求得k的范圍,再取并集,即得所求.

(3)由條件可得,求得m、n的值,可得結(jié)論.

詳解:(1) ,且

又方程,即有等根,

,即,從而,.

,值域為.

(2) ,

①當時, ,此時,解得

②當時,設,對稱軸,要,只需,解得

,.

綜合①②,得.

(3) ,則有.

又因為對稱軸,所以是增函數(shù),即

解得.

存在使的定義域和值域分別為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,則該程序運行后輸出的值是(
A.2014
B.2015
C.2016
D.2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:x∈[1,2], ﹣lnx﹣a≥0,命題q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命題“p或q”是真命題,命題“p且q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有A、B兩家羽毛球球俱樂部,兩家設備和服務都很好,但收費方式不同,A俱樂部每塊場地每小時收費6元;B俱樂部按月計費,一個月中20小時以內(nèi)20小時每塊場地收費90元,超過20小時的部分,每塊場地每小時2元,某企業(yè)準備下個月從這兩家俱樂部中的一家租用一塊場地開展活動,其活動時間不少于12小時,也不超過30小時.

設在A俱樂部租一塊場地開展活動x小時的收費為,在B俱樂部租一塊場地開展活動x小時的收費為,試求的解析式;

問該企業(yè)選擇哪家俱樂部比較合算,為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)常數(shù)

證明上是減函數(shù),在上是增函數(shù);

時,求的單調(diào)區(qū)間;

對于中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.

證明:平面PNB;

設點E是棱PA上一點,若平面DEM,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2-7x+60},B={x|4-txt},R為實數(shù)集.

1)當t=4時,求ABARB;

2)若AB=A,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,函數(shù)的圖象在點處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設斜率為的直線與函數(shù)的圖象交于兩點 , ,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綜合題。
(1)設不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案