【題目】已知函數(shù)常數(shù)

證明上是減函數(shù),在上是增函數(shù);

時,求的單調區(qū)間;

對于中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值.

【答案】(1)見解析;(2)見解析;(3)

【解析】

利用定義證明即可;看成整體,研究對勾函數(shù)的單調性以及利用復合函數(shù)的單調性的性質得到該函數(shù)的單調性;對于任意的,總存在,使得可轉化成的值域為的值域的子集,建立關系式,解之即可.

證明::設,,且

,

,

時,即,

時,即,

時,,即,此時函數(shù)為減函數(shù),

時,,即,此時函數(shù)為增函數(shù),

上是減函數(shù),在上是增函數(shù);

時,,

,

,則,

可知上是減函數(shù),在上是增函數(shù);

,,

,

上是減函數(shù),在上是增函數(shù);

由于為減函數(shù),故,

又由(2)得

由題意,的值域為的值域的子集,

從而有,

解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內角A、B、C所對邊的長分別為a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大;
(Ⅱ)若b=2,c=1,D為BC的中點,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若,函數(shù)的最大值為,最小值為,求的值;

(2)當時,函數(shù)的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在冬季,由于受到低溫和霜凍的影響,蔬菜的價格會隨著需求量的增加而提升.已知某供應商向飯店定期供應某種蔬菜,其價格會隨著日需求量的增加而上升,具體情形統(tǒng)計如下表所示:

(1)根據(jù)上表中的數(shù)據(jù)進行判斷,哪一個更適合作為日供應量與單價之間的回歸方程;(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結果以及參考數(shù)據(jù),建立關于的回歸方程;

(3)該地區(qū)有個酒店,其中個酒店每日對蔬菜的需求量在以下,個酒店對蔬菜的需求量在以上,從這個酒店中任取個進行調查,求恰有個酒店對蔬菜需求量在以上的概率.

參考公式及數(shù)據(jù):

對于一組數(shù)據(jù)...,其回歸直線的斜率和截距的最小二乘估計分別為

其中:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上是減函數(shù),在上是增函數(shù)若函數(shù),利用上述性質,

時,求的單調遞增區(qū)間只需判定單調區(qū)間,不需要證明;

在區(qū)間上最大值為,求的解析式;

若方程恰有四解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù), ,函數(shù),且方程有等

根.

(1)求的解析式及值域;

(2)設集合,,若,求實數(shù)的取值范圍;

(3)是否存在實數(shù),使的定義域和值域分別為?若存在,求

的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進節(jié)能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標準如下表:

新能源汽車補貼標準

車輛類型

續(xù)駛里程R(公里)

80≤R<150

150≤R<250

R≥250

純電動乘用車

3.5萬元/輛

5萬元/輛

6萬元/輛

某校研究性學習小組,從汽車市場上隨機選取了M輛純電動乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:

分組

頻數(shù)

頻率

80≤R<150

2

0.2

150≤R<250

5

x

R≥250

y

z

合計

M

1

(Ⅰ)求x,y,z,M的值;
(Ⅱ)若從這M輛純電動乘用車中任選2輛,求選到的2輛車續(xù)駛里程都不低于150公里的概率;
(Ⅲ)若以頻率作為概率,設X為購買一輛純電動乘用車獲得的補貼,求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是在豎直平面內的一個“通道游戲”,圖中豎直線段和斜線段都表示通道,并且在交點處相通,假設一個小彈子在交點處向左或向右是等可能的.若豎直線段有一條的為第一層,有兩條的為第二層,……,依此類推,現(xiàn)有一顆小彈子從第一層的通道里向下運動.則該小彈子落入第四層從左向右數(shù)第3個豎直通道的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 曲線在原點處的切線為 .

(1)證明:曲線軸正半軸有交點;

(2)設曲線軸正半軸的交點為,曲線在點處的切線為直線,求證:曲線上的點都不在直線的上方 ;

(3)若關于的方程為正實數(shù))有不等實根求證:

查看答案和解析>>

同步練習冊答案