【題目】某商場在店慶日進行抽獎促銷活動,當日在該店消費的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標有“生”“意”“興”“隆”字的球為一等獎;不分順序取到標有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標有“生”“意”“興”三個字的球為三等獎. (Ⅰ)求分別獲得一、二、三等獎的概率;
(Ⅱ)設(shè)摸球次數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

【答案】解:(Ⅰ)設(shè)“摸到一等獎、二等獎、三等獎”分別為事件A,B,C. 則P(A)= ,
P(B)= = ;
三等獎的情況有:“生,生,意,興”;“生,意,意,興”;“生,意,興,興”三種情況.
P(C)= =
(Ⅱ)設(shè)摸球的次數(shù)為ξ,則ξ=1,2,3,4.
, ,
故取球次數(shù)ξ的分布列為

ξ

1

2

3

4

P

=
【解析】(Ⅰ)由題意設(shè)“摸到一等獎、二等獎、三等獎”分別為事件A,B,C,利用獨立事件同時發(fā)生的概率公式及互斥事件的概率公式即可求得;(Ⅱ)由于摸球次數(shù)為ξ,按題意則ξ=1,2,3,4,利用隨機變變量的定義及隨機變量的分布列及期望定義即可求得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x﹣a|+|x﹣1| (Ⅰ)當a=2,求不等式f(x)<4的解集;
(Ⅱ)若對任意的x,f(x)≥2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+5x.
(1)當a=﹣1時,求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1時有f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,該程序運行后輸出的結(jié)果是(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xoy取相同的單位長度,且以原點為極點,x軸的正半軸為極軸)中,圓C的極坐標方程為ρ=4cosθ.
(1)若直l線與圓C相切,求實數(shù)a的值;
(2)若點M的直角坐標為(1,1),求過點M且與直線l垂直的直線m的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為△ABC內(nèi)一點,且 ,若B,O,D三點共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,a2+b2+c2=ac+bc+ca.
(1)證明:△ABC是正三角形;
(2)如圖,點D的邊BC的延長線上,且BC=2CD,AD= ,求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時各打了幾尺長的洞?設(shè)兩鼠x 天后相遇(假設(shè)兩鼠每天的速度是勻速的),則x=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: + =1(a>b>0),離心率為 ,焦點F1(0,﹣c),F(xiàn)2(0,c)過F1的直線交橢圓于M,N兩點,且△F2MN的周長為4. (I) 求橢圓方程;
(II) 與y軸不重合的直線l與y軸交于點P(0,m)(m≠0),與橢圓C交于相異兩點A,B且 .若 =4 ,求m的取值范圍.

查看答案和解析>>

同步練習冊答案