【題目】已知橢圓,圓,直線與橢圓交于,兩點,與圓相切與點,且為線段的中點,若這樣的直線4條,則的取值范圍為______.

【答案】

【解析】

分直線斜率存在和不存在兩種情況各兩條,根據(jù)中點弦和切線關系解出中點坐標,再根據(jù)點在橢圓內部即可解得的取值范圍.

根據(jù)橢圓和圓的對稱性,要使這樣的直線有4條,必斜率不存在的直線兩條,且斜率存在的直線兩條,

i)當直線斜率不存在時,要有兩條符合題意:

ii)當直線斜率存在時也有兩條直線滿足條件才符合題意,當時,兩條直線符合題意,

時,先證明中點弦公式:直線與橢圓交于,兩點,且為線段的中點,則

在橢圓上,

為線段的中點,

,兩式相減:

當直線斜率存在時,設點,在圓上

根據(jù)中點弦公式

根據(jù)直線與圓相切

,在圓上

解得:,這樣的點兩個,關于x軸對稱,

在橢圓內部:

解得,

綜上所述:

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知若橢圓)交軸于兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的個數(shù)為______.

1.是一個區(qū)間,若對任意,,當時,都有,則上單調遞增;

2.函數(shù)在定義域上是單調遞減函數(shù);

3.函數(shù)在定義域上是單調遞增函數(shù);

4.集合相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個同學家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響.經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當天氣溫的散點圖和對比表

攝氏溫度

—5

4

7

10

15

23

30

36

熱飲杯數(shù)

162

128

115

135

89

71

63

37

(參考公式),

(參考數(shù)據(jù)),,.樣本中心點為.

1)從散點圖可以發(fā)現(xiàn),各點散布在從左上角到右下角的區(qū)域里.因此,氣溫與當天熱飲銷售杯數(shù)之間成負相關,即氣溫越高,當天賣出去的熱飲杯數(shù)越少.統(tǒng)計中常用相關系數(shù)來衡量兩個變量之間線性關系的強弱.統(tǒng)計學認為,對于變量、,如果,那么負相關很強;如果,那么正相關很強;如果,那么相關性一般;如果,那么相關性較弱.請根據(jù)已知數(shù)據(jù),判斷氣溫與當天熱飲銷售杯數(shù)相關性的強弱.

2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當天熱飲銷售杯數(shù)的線性回歸方程;

ii)記為不超過的最大整數(shù),如,.對于(1)中求出的線性回歸方程,將視為氣溫與當天熱飲銷售杯數(shù)的函數(shù)關系.已知氣溫與當天熱飲每杯的銷售利潤的關系是(單位:元),請問當氣溫為多少時,當天的熱飲銷售利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內,現(xiàn)將成績按區(qū)間,,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知, ,,D是邊AC上的一點,將△ABC沿BD折疊,得到三棱錐A-BCD,若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設BM=x,則x的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小王投資1萬元2萬元、3萬元獲得的收益分別是4萬元、9萬元、16萬元為了預測投資資金x(萬元)與收益y萬元)之間的關系,小王選擇了甲模型和乙模型.

1)根據(jù)小王選擇的甲、乙兩個模型,求實數(shù)a,b,c,p,q,r的值

2)若小王投資4萬元,獲得收益是25.2萬元,請問選擇哪個模型較好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)在直角坐標系內直接畫出的圖象;

2)寫出的單調區(qū)間,并指出單調性(不要求證明);

3)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案