【題目】惠州市某學(xué)校需要從甲、乙兩名學(xué)生中選1人參加數(shù)學(xué)競(jìng)賽,抽取了近期兩人5次數(shù)學(xué)考試的分?jǐn)?shù),統(tǒng)計(jì)結(jié)果如下表:

第一次

第二次

第三次

第四次

第五次

80

85

71

92

87

90

76

75

92

82

1)若從甲、乙兩人中選出1人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選誰合適?請(qǐng)說明理由.

2)若數(shù)學(xué)競(jìng)賽分初賽和復(fù)賽,在初賽中答題方案如下:

每人從5道備選題中隨機(jī)抽取3道作答,若至少答對(duì)其中2道,則可參加復(fù)賽,否則被淘汰.假設(shè)被選中參賽的學(xué)生只會(huì)5道備選題中的3道,求該學(xué)生能進(jìn)人復(fù)賽的概率.

【答案】(1)見解析;(2).

【解析】

1)分別計(jì)算甲乙的平均成績(jī)和方差,得到答案.

2)5道備選題中會(huì)的3道分別記為,,,不會(huì)的2道分別記為,列出所有情況,再計(jì)算滿足條件的情況,相除得到答案.

(1)選派乙參賽比較合適,理由如下:

甲的平均成績(jī)?yōu)?/span>;

乙的平均成績(jī)?yōu)?/span>,

甲的成績(jī)方差;

乙的成績(jī)方差為;

由于,乙的成績(jī)較穩(wěn)定,故選派乙參賽比較合適.

(2)5道備選題中會(huì)的3道分別記為,,,不會(huì)的2道分別記為,.

學(xué)生從5道備選題中任意抽出3道的結(jié)果共10種,分別是:

,,,,,,,.抽中至少2道會(huì)的備選題的結(jié)果共7種,分別是:

,,,,

所以學(xué)生能進(jìn)入復(fù)賽的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次“綜藝類和體育類節(jié)目,哪一類節(jié)目受中學(xué)生歡迎”的調(diào)查中,隨機(jī)調(diào)查了男女各100名學(xué)生,其中女同學(xué)中有73人更愛看綜藝類節(jié)目,另外27人更愛看體育類節(jié)目;男同學(xué)中有42人更愛看綜藝類節(jié)目,另外58人更愛看體育類節(jié)目.

(1)根據(jù)以上數(shù)據(jù)填寫如下列聯(lián)表:

綜藝類

體育類

總計(jì)

總計(jì)

(2)試判斷是否有的把握認(rèn)為“中學(xué)生更愛看綜藝類節(jié)目還是體育類節(jié)目與性別有關(guān)”.

參考公式:,其中.

臨界值表:

0.025

0.01

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價(jià)為每千克元,成本為每千克元,銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售,如果當(dāng)天賣不完,那么未售出的部分全部處理,平均每千克損失元.根據(jù)以往的市場(chǎng)調(diào)查,將市場(chǎng)日需求量(單位:千克)按,,進(jìn)行分組,得到如圖的頻率分布直方圖.

(Ⅰ)未來連續(xù)三天內(nèi),連續(xù)兩天該種鮮錢的日需求量不低于千克,而另一天的日需求量低于千克的概率;

(Ⅱ)在頻率分布直方圖的日需求量分組中,以各組區(qū)間的中點(diǎn)值代表該組的各個(gè)值,并以日需求量落入該區(qū)間的頻率作為日需求量取該區(qū)間中點(diǎn)值的概率.若經(jīng)銷商每日進(jìn)貨千克,記經(jīng)銷商每日利潤(rùn)為(單位:元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類教學(xué)實(shí)驗(yàn),為對(duì)比教學(xué)效果,現(xiàn)用分層抽樣的方法從兩類學(xué)生中分別抽取了40人,60人進(jìn)行測(cè)試

1)求該學(xué)校高一新生兩類學(xué)生各多少人?

2)經(jīng)過測(cè)試,得到以下三個(gè)數(shù)據(jù)圖表:

175分以上兩類參加測(cè)試學(xué)生成績(jī)的莖葉圖

2100名測(cè)試學(xué)生成績(jī)的頻率分布直方圖

下圖表格:100名學(xué)生成績(jī)分布表:

先填寫頻率分布表中的六個(gè)空格,然后將頻率分布直方圖(圖2)補(bǔ)充完整;

該學(xué)校擬定從參加考試的79分以上(含79分)的類學(xué)生中隨機(jī)抽取2人代表學(xué)校參加市比賽,求抽到的2人分?jǐn)?shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若函數(shù)僅在處取得極值,求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有三個(gè)極值點(diǎn),,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了了解民眾對(duì)開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成AB兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評(píng)分,B組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖莖葉圖:

根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段創(chuàng)文工作滿意度評(píng)分的平均值及集中程度不要求計(jì)算出具體值,給出結(jié)論即可;

根據(jù)群眾的評(píng)分將滿意度從低到高分為三個(gè)等級(jí):

滿意度評(píng)分

低于70分

70分到89分

不低于90分

滿意度等級(jí)

不滿意

滿意

非常滿意

由頻率估計(jì)概率,判斷該市開展創(chuàng)文工作以來哪個(gè)階段的民眾滿意率高?說明理由.

完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?

低于70分

不低于70分

第一階段

第二階段

附:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過點(diǎn)(圖2).有下列四個(gè)命題:

A.正四棱錐的高等于正四棱柱高的一半

B.將容器側(cè)面水平放置時(shí),水面也恰好過點(diǎn)

C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過點(diǎn)

D.若往容器內(nèi)再注入升水,則容器恰好能裝滿

其中真命題的代號(hào)是: (寫出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),的外接圓與拋物線的準(zhǔn)線相切,且外接圓的周長(zhǎng)為.

1)求拋物線的方程;

2)已知點(diǎn),設(shè)不垂直于軸的直線與拋物線交于不同的兩點(diǎn),,若,證明直線過定點(diǎn)并寫出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在雙曲線上,且,則的面積為________;

查看答案和解析>>

同步練習(xí)冊(cè)答案