【題目】已知函數(shù).

)求曲線在點(diǎn)處的切線方程;

)求證:“”是“函數(shù)有且只有一個(gè)零點(diǎn)” 的充分必要條件.

【答案】;(證明見(jiàn)解析.

【解析】試題分析:(1)根據(jù)切線的幾何意義得到切線的斜率 ,所以切線方程為;(2)先證充分性再證必要性,含參討論,函數(shù)圖像和x軸的交點(diǎn)情況。

解析:

依題意,

所以切線的斜率

又因?yàn)?/span>所以切線方程為.

先證不必要性.

當(dāng)時(shí), ,令,解得.

此時(shí), 有且只有一個(gè)零點(diǎn),故“有且只有一個(gè)零點(diǎn)則”不成立.

再證充分性.

方法一:

當(dāng)時(shí), .

,解得.

i當(dāng),即時(shí), ,

所以上單調(diào)增.

所以有且只有一個(gè)零點(diǎn).

ii當(dāng),即時(shí),

, 的變化情況如下:

0

0

0

極大值

極小值

當(dāng)時(shí), , ,所以

所以有且只有一個(gè)零點(diǎn).

iii)當(dāng),即時(shí), , 的變化情況如下:

0

0

0

極大值

極小值

因?yàn)?/span>所以時(shí),

,.

下面證明當(dāng)時(shí), .

設(shè),.

當(dāng)時(shí), 上單調(diào)遞增;

當(dāng)時(shí), 上單調(diào)遞減

所以當(dāng)時(shí), 取得極大值.

所以當(dāng)時(shí), , .

所以.

由零點(diǎn)存在定理, 有且只有一個(gè)零點(diǎn).

綜上, 是函數(shù)有且只有一個(gè)零點(diǎn)的充分不必要條件.

方法二:

當(dāng)時(shí),注意到時(shí), , , ,

因此只需要考察上的函數(shù)零點(diǎn).

i)當(dāng),即時(shí), 時(shí),

單調(diào)遞增.

有且只有一個(gè)零點(diǎn).

ii)當(dāng),即時(shí),以下同方法一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為

1,過(guò)點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值

2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問(wèn):是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講設(shè)函數(shù)

(1)當(dāng)時(shí),解不等式:;

(2)若關(guān)于x的不等式fx)≤4的解集為[﹣1,7],且兩正數(shù)st滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫(xiě)出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶對(duì)其所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了40個(gè)用戶,得到用戶的滿意度評(píng)分如下:

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為92.

(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);

(2)計(jì)算所抽到的10個(gè)樣本的均值和方差

(3)在(2)條件下,若用戶的滿意度評(píng)分在之間,則滿意度等級(jí)為“級(jí)”.試應(yīng)用樣本估計(jì)總體的思想,估計(jì)該地區(qū)滿意度等級(jí)為“級(jí)”的用戶所占的百分比是多少?(精確到)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,若橢圓,則稱橢圓與橢圓 “相似”.

(1)求經(jīng)過(guò)點(diǎn),且與橢圓 “相似”的橢圓的方程;

(2)若,橢圓的離心率為在橢圓上,過(guò)的直線交橢圓兩點(diǎn),且.

①若的坐標(biāo)為,且,求直線的方程;

②若直線,的斜率之積為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?

愿意

不愿意

總計(jì)

男生

女生

總計(jì)

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再?gòu)闹谐槿?人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為

(1)求曲線的普通方程及直線的直角坐標(biāo)方程;

(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值

由散點(diǎn)圖知建立關(guān)于的回歸方程是合理的,,經(jīng)計(jì)算得如下數(shù)據(jù)

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根據(jù)以上信息,建立關(guān)于的回歸方程;

(2)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少?

對(duì)于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

同步練習(xí)冊(cè)答案