【題目】已知().
(1)當(dāng)時,求關(guān)于的不等式的解集;
(2)若f(x)是偶函數(shù),求k的值;
(3)在(2)條件下,設(shè),若函數(shù)與的圖象有公共點,求實數(shù)b的取值范圍.
【答案】(1)(2)1(3)
【解析】
(1)根據(jù)條件列指數(shù)不等式,直接求解即可;
(2)利用偶函數(shù)定義列直接求解即可;
(3)根據(jù)題意列方程,令,得到方程,構(gòu)造,結(jié)合二次函數(shù)性質(zhì)討論方程的根即可.
(1)因為
所以原不等式的解集為
(2)因為的定義域為且為偶函數(shù),
所以
即
所以. 經(jīng)檢驗滿足題意.
(3)有(2)可得
因為函數(shù)與的圖象有公共點
所以方程有根
即
有根
令且()
方程可化為(*)
令恒過定點
①當(dāng)時,即時,(*)在上有根
(舍);
②當(dāng)時,即時,(*)在上有根
因為,則(*)方程在上必有一根
故成立;
③當(dāng)時,(*)在上有根
則有
④當(dāng)時,(*)在上有根
則有
綜上可得:的取值范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美國對中國芯片的技術(shù)封鎖,這卻激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的,兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費資金千萬元,現(xiàn)在準(zhǔn)備投入資金進行生產(chǎn).經(jīng)市場調(diào)查與預(yù)測,生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬元,公司獲得毛收入千萬元;生產(chǎn)芯片的毛收入(千萬元)與投入的資金(千萬元)的函數(shù)關(guān)系為,其圖像如圖所示.
(1)試分別求出生產(chǎn),兩種芯片的毛收入(千萬元)與投入資金(千萬元)的函數(shù)關(guān)系式;
(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?
(3)現(xiàn)在公司準(zhǔn)備投入億元資金同時生產(chǎn),兩種芯片,設(shè)投入千萬元生產(chǎn)芯片,用表示公司所過利潤,當(dāng)為多少時,可以獲得最大利潤?并求最大利潤.(利潤芯片毛收入芯片毛收入研發(fā)耗費資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對于任意的 ,都有, 當(dāng)時,,且.
( I ) 求的值;
(II) 當(dāng)時,求函數(shù)的最大值和最小值;
(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個零點,并求出此時實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(12分)
(1)若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求實數(shù)的取值范圍;
(2)若存在,使得,求實數(shù)的取值范圍;
(3)若對于恒成立,試問是否存在實數(shù),使得成立?若存在,求出實數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機抽取該流水線上的件產(chǎn)品作為樣本,稱出它們的重量(單位:克),重量的分組區(qū)間為,,…,,由此得到樣本的頻率分布方圖,如圖所示.
(1)在上述抽取的件產(chǎn)品中任取件,設(shè)為取到重量超過克的產(chǎn)品件數(shù),求的概率;
(2)從上述件產(chǎn)品中任取件,設(shè)為取到重量超過克的產(chǎn)品件數(shù),求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際奧委會于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔(dān)心賽事費用超支而相繼退出,某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了100位居民調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | _______ | _______ | 80 |
年齡大于50歲 | 10 | _______ | _______ |
合計 | _______ | 70 | 100 |
(1)根據(jù)已知數(shù)據(jù),把表格填寫完整;
(2)是否有95%的把握認為年齡與支持申辦奧運有關(guān)?
附表:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.814 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列{an}前n項和為Sn , 且滿足S3= ,a6 , 3a5 , a7成等差數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列bn= ,且數(shù)列bn的前n項的和Tn , 試比較Tn與 的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com