【題目】函數(shù)的圖象為C,如下結(jié)論中正確的是( )
①圖象C關(guān)于直線對(duì)稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);
③圖象C關(guān)于點(diǎn)對(duì)稱;④由的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C
A.①③B.②③C.①②③D.①②
【答案】C
【解析】
先通過(guò)三角公式將函數(shù)變形為的形式,
①直接利用整體思想求出函數(shù)的對(duì)稱軸方程,根據(jù)的取值求得結(jié)果.
②直接利用整體思想求出函數(shù)的單調(diào)區(qū)間,根據(jù)的取值求得結(jié)果.
③直接利用整體思想求出函數(shù)的對(duì)稱中心,根據(jù)的取值求得結(jié)果.
④直接利用函數(shù)的平移變換求得結(jié)果.
解:
①令:,解得:,
當(dāng)時(shí),圖象關(guān)于直線對(duì)稱,所以①正確.
②令:,
解得:,
當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)是增函數(shù);所以②正確.
③令:,解得:,
當(dāng)時(shí),圖象關(guān)于點(diǎn)對(duì)稱.所以③正確.
④將的圖象向右平移個(gè)單位,得到的函數(shù)解析式為,所以④錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,,直線與平面所成的角等于.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中.
(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由;
(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是直線l:3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓C:x2+y2-2x-2y+1=0的兩條切線(A,B為切點(diǎn)),則四邊形PACB面積的最小值( 。
A. B. C. 2D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△中, , 分別為, 的中點(diǎn), 為的中點(diǎn), , .將△沿折起到△的位置,使得平面平面, 為的中點(diǎn),如圖2.
(1)求證: 平面;
(2)求證:平面平面;
(3)線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)用“五點(diǎn)法”作函數(shù)的圖象;
(2)說(shuō)出此圖象是由的圖象經(jīng)過(guò)怎樣的變化得到的;
(3)求此函數(shù)的對(duì)稱軸、對(duì)稱中心、單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=x2B.C.y=2|x|D.y=cosx
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè),f(x)的最小值是,最大值是3,求實(shí)數(shù)m,n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com