【題目】設(shè)函數(shù),.

1)若對(duì)任意恒成立,求的取值范圍;

2,討論函數(shù)的單調(diào)性.

【答案】1;(2)見解析

【解析】

1)將對(duì)任意,恒成立,轉(zhuǎn)化為對(duì)任意, 恒成立,令,由函數(shù)在區(qū)間上單調(diào)遞減,只需證恒成立即可.

2)得到,求導(dǎo),再分, , 五種情況討論求解.

1)因?yàn)?/span>,,即,

,

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞減,

所以恒成立,

在區(qū)間上恒成立,

.

2

,

當(dāng)時(shí),,

,,遞增,,遞減,

當(dāng)時(shí),,

,,遞增,,遞減,

當(dāng)時(shí),,的單調(diào)遞增區(qū)間為

當(dāng)時(shí),;,當(dāng)變化,變化如下表

1

負(fù)

遞增

極大值

遞減

極小值

遞增

即單調(diào)增區(qū)間為,,減區(qū)間為.

當(dāng)時(shí),,;,當(dāng)變化,,變化如下表

1

負(fù)

遞增

極大值

遞減

極小值

遞增

即單調(diào)增區(qū)間為,,減區(qū)間為.

綜上:當(dāng)時(shí),單調(diào)增區(qū)間為,減區(qū)間為,

當(dāng)時(shí),單調(diào)增區(qū)間為,減區(qū)間為,

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,

當(dāng)時(shí),單調(diào)增區(qū)間為,,減區(qū)間為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】未了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,,,整理得到如圖所示的頻率分布直方圖.

在這100人中不支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

不支持“延遲退休”的人數(shù)

15

5

15

23

17

(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);

(2)由頻率分布直方圖,若在年齡,的三組內(nèi)用分層抽樣的方法抽取12人做問卷調(diào)查,求年齡在組內(nèi)抽取的人數(shù);

(3)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的不支持態(tài)度存在差異?

\

45歲以下

45歲以上

總計(jì)

不支持

支持

總計(jì)

附:,其中.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的方程為,曲線為參數(shù),),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線有公共點(diǎn),且直線與曲線的交點(diǎn)恰好在曲線軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某地區(qū)70歲以上老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了100位70歲以上老人,結(jié)果如下:

需要

18

5

不需要

32

45

(1)估計(jì)該地區(qū)70歲以上老人中,男、女需要志愿者提供幫助的比例各是多少?

(2)能否有的把握認(rèn)為該地區(qū)70歲以上的老人是否需要志愿者提供幫助與性別有關(guān);

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)70歲以上老人中,需要志愿者提供幫助的老人的比例?說明理由.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

第一種生產(chǎn)方式

第二種生產(chǎn)方式

8

6

5

5

6

8

9

9

7

6

2

7

0

1

2

2

3

4

5

6

6

8

9

8

7

7

6

5

4

3

3

2

8

1

4

4

5

2

1

1

0

0

9

0

1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時(shí)間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:

超過m

不超過m

總計(jì)

第一種生產(chǎn)方式

第二種生產(chǎn)方式

總計(jì)

3)根據(jù)(2)中的列表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績,分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足個(gè)小時(shí),組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí),學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達(dá)標(biāo)

未達(dá)標(biāo)

總計(jì)

總計(jì)

2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).

參考公式與臨界值表:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于0的等差數(shù)列的前n項(xiàng)和為,且滿足,.

1)求數(shù)列的通項(xiàng)公式;

2)若,求的表達(dá)式;

3)若,存在非零常數(shù),使得數(shù)列是等差數(shù)列,存在,不等式成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案