【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績(jī),分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足個(gè)小時(shí),組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí),學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達(dá)標(biāo)

未達(dá)標(biāo)

總計(jì)

總計(jì)

2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).

參考公式與臨界值表:,其中.

【答案】1)詳見解析(2)沒有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).

【解析】

1)根據(jù)莖葉圖中的數(shù)據(jù)可補(bǔ)充列聯(lián)表中的數(shù)據(jù);

2)計(jì)算出的觀測(cè)值,結(jié)合臨界值表可得出結(jié)論.

1)列聯(lián)表如下:

達(dá)標(biāo)

未達(dá)標(biāo)

總計(jì)

總計(jì)

2)由公式,而,

所以,沒有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抖音是一款音樂創(chuàng)意短視頻社交軟件,是一個(gè)專注年輕人的15s音樂短視頻社區(qū). 用戶可以通過這款軟件選擇歌曲,拍攝15s的音樂短視頻,形成自己的作品. 20186月首批25家央企集體入駐抖音,一調(diào)研員在某單位隨機(jī)抽取7人進(jìn)行刷抖音時(shí)間的調(diào)查,若抽出的7人中有3人是抖音迷,4人為非抖音迷,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的詳細(xì)登記.

1)用X表示抽取的3人中是抖音迷的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

2)設(shè)A為事件抽取的3人中,既有是抖音迷的員工,也有非抖音迷的員工,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)若對(duì)任意,恒成立,求的取值范圍;

2,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線 與橢圓有且只有一個(gè)公共點(diǎn).

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)是坐標(biāo)原點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn)、,且與直線交于點(diǎn),證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛇養(yǎng)殖基地因國(guó)家實(shí)施精準(zhǔn)扶貧,大力扶持農(nóng)業(yè)產(chǎn)業(yè)發(fā)展,擬擴(kuò)大養(yǎng)殖規(guī)模.現(xiàn)對(duì)該養(yǎng)殖基地已經(jīng)售出的王錦蛇的體長(zhǎng)(單位:厘米)進(jìn)行了統(tǒng)計(jì),得到體長(zhǎng)的頻數(shù)分布表如下:

體長(zhǎng)(厘米)

頻數(shù)

40

50

110

160

120

20

(1)將王錦蛇的體長(zhǎng)在各組的頻率視為概率,趙先生欲從此基地隨機(jī)購買3條王錦蛇,求至少有2條體長(zhǎng)不少于200厘米的概率.

(2)為了拓展銷售市場(chǎng),該養(yǎng)殖基地決定購買王錦蛇與烏梢蛇兩類成年母蛇用于繁殖幼蛇,這兩類蛇各200條的相關(guān)信息如下表.

繁殖年限(年)

3

4

5

6

王錦蛇(條)

20

60

80

40

烏梢蛇(條)

30

80

70

20

若王錦蛇、烏梢蛇成年母蛇的購買成本分別為650元/條、600元/條,每條母蛇平均可為養(yǎng)殖場(chǎng)獲得1200元/年的銷售額,且每條蛇的繁殖年限均為整數(shù),將每條蛇的繁殖年限的頻率看作概率,以每條蛇所獲得的毛利潤(rùn)(毛利潤(rùn)=總銷售額-購買成本)的期望值作為購買蛇類的依據(jù),試問:應(yīng)購買哪類蛇?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)若射線的極坐標(biāo)方程為.設(shè)相交于點(diǎn),相交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)任意,函數(shù)的圖像不在軸上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形.

若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018122日,依照中國(guó)文聯(lián)及中國(guó)民間文藝家協(xié)會(huì)命名中國(guó)觀音文化之鄉(xiāng)的有關(guān)規(guī)定,中國(guó)文聯(lián)、中國(guó)民協(xié)正式命名四川省遂寧市為中國(guó)觀音文化之鄉(xiāng)”.

下表為2014年至2018年觀音文化故里某土特產(chǎn)企業(yè)的線下銷售額(單位:萬元)

年份

2014

2015

2016

2017

2018

線下銷售額

90

170

210

280

340

為了解祝福觀音、永保平安活動(dòng)的支持度.某新聞?wù){(diào)查組對(duì)40位老年市民和40位年輕市民進(jìn)行了問卷調(diào)查(每位市民從很支持支持中任選一種),其中很支持的老年市民有30人,支持的年輕市民有15.

1)從以上5年中任選2年,求其銷售額均超過200萬元的概率;

2)請(qǐng)根據(jù)以上信息列出列聯(lián)表,并判斷能否有85%的把握認(rèn)為支持程度與年齡有關(guān).

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案