【題目】在長方體ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F(xiàn),E1分別是棱AA1 , BB1 , A1B1的中點(diǎn).
(1)求證:CE∥平面C1E1F;
(2)求證:平面C1E1F⊥平面CEF.
【答案】
(1)證明:取CC1的中點(diǎn)G,連接B1G交C1F于點(diǎn)F1,連接E1F1,A1G,F(xiàn)G,
∵F是BB1的中點(diǎn),BCC1B1是矩形,
∵四邊形FGC1B1也是矩形,
∴FC1與B1G相互平分,即F1是B1G的中點(diǎn).
又E1是A1B1的中點(diǎn),∴A1G∥E1F1.
又在長方體中,AA1綊CC1,E,G分別為AA1,CC1的中點(diǎn),
∴A1E綊CG,∴四邊形A1ECG是平行四邊形,
∴A1G∥CE,∴E1F1∥CE.
∵CE平面C1E1F,E1F1平面C1E1F,
∴CE∥平面C1E1F
(2)證明:∵長方形BCC1B1中,BB1=2BC,F(xiàn)是BB1的中點(diǎn),
∴△BCF、△B1C1F都是等腰直角三角形,
∴∠BFC=∠B1FC1=45°,
∴∠CFC1=180°﹣45°﹣45°=90°,
∴C1F⊥CF.
∵E,F(xiàn)分別是矩形ABB1A1的邊AA1,BB1的中點(diǎn),
∴EF∥AB.
又AB⊥平面BCC1B1,又C1F平面BCC1B1,
∴AB⊥C1F,∴EF⊥C1F.
又CF∩EF=F,∴C1F⊥平面CEF.
∵C1F平面C1E1F,∴平面C1E1F⊥平面CEF.
【解析】(1)要求證:CE∥平面C1E1F,取CC1的中點(diǎn)G,連接B1G交C1F于點(diǎn)F1,連接E1F1,A1G,F(xiàn)G,證明E1F1∥CE即可;(2)要證:平面C1E1F⊥平面CEF,證明C1F⊥CF,EF⊥C1F即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對(duì)平面與平面垂直的判定的理解,了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式;
(3)設(shè)函數(shù) ,若對(duì)任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊.已知sinC= sinB,c=2,cosA= .
(Ⅰ)求a的值;
(Ⅱ)求sin(2A﹣ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動(dòng)點(diǎn),定點(diǎn)A( , ),B是曲線ρ=﹣2sinθ上的動(dòng)點(diǎn),求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,記拋物線y=x﹣x2與x軸所圍成的平面區(qū)域?yàn)镸,該拋物線與直線y=kx(k>0)所圍成的平面區(qū)域?yàn)镹,向區(qū)域M內(nèi)隨機(jī)拋擲一點(diǎn)P,若點(diǎn)P落在區(qū)域N內(nèi)的概率為 ,則k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若m=2,求f(x)的最小值;
(2)若f(x)恰有2個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2﹣x),當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣1,若在區(qū)間(﹣2,6)內(nèi)關(guān)于x的方程f(x)﹣log a(x+2)=0,恰有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a(a>0,a≠1)的取值范圍是( )
A.( ,1)
B.(1,4)
C.(1,8)
D.(8,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷量P(件)與單價(jià)x(元)之間的關(guān)系如圖折線所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(I)根據(jù)周銷量圖寫出周銷量P(件)與單價(jià)x(元)之間的函數(shù)關(guān)系式;
(Ⅱ)寫出周利潤y(元)與單價(jià)x(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為A、B、C的對(duì)邊,且滿足2(a2﹣b2)=2accosB+bc
(1)求A
(2)D為邊BC上一點(diǎn),CD=3BD,∠DAC=90°,求tanB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com