已知數(shù)列{an}的各項(xiàng)都是正數(shù),前n項(xiàng)和是Sn,且點(diǎn)(an,2Sn)在函數(shù)y=x2+x的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
2Sn
,Tn=b1+b2+…+bn,求Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由點(diǎn)(an,2Sn)在函數(shù)y=x2+x的圖象上,可得2Sn=an2+an,遞推得2Sn-1=an-12+an-1(n≥2),兩式相減整理可得(an+an-1)(an-an-1-1)=0,由an+an-1≠0,可知an-an-1=1,符合等差數(shù)列的定義,即可求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求出bn=
1
2Sn
=
1
n
-
1
n+1
,即可求Tn
解答: 解:(Ⅰ)∵點(diǎn)(an,2Sn)在函數(shù)y=x2+x的圖象上,
∴2Sn=an2+an,
∴2Sn-1=an-12+an-1(n≥2).
兩式相減得2an=an2-an-12+an-an-1
整理得(an+an-1)(an-an-1-1)=0,
∵an+an-1≠0,
∴an-an-1=1(常數(shù)).
∴{an}是以1為公差的等差數(shù)列.
又2S1=a12+a1,即a12-a1=0,解得a1=1,
∴an=1+(n-1)×1=n;
(Ⅱ)2Sn=n2+n,∴bn=
1
2Sn
=
1
n
-
1
n+1

∴Tn=b1+b2+…+bn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
點(diǎn)評(píng):本題主要考查數(shù)列與函數(shù),涉及了等差數(shù)列通項(xiàng)及前n項(xiàng)和,正確運(yùn)用裂項(xiàng)法是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

斜三棱柱ABC-A1B1C1的各棱長(zhǎng)為a,側(cè)棱與底面所成的角為60°,且側(cè)面ABB1A1垂直于底面.
(Ⅰ)判斷B1C與AC1是否垂直,并證明你的結(jié)論;
(Ⅱ)求三棱柱的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的前n項(xiàng)和為Sn,則S2n-1=(2n-1)an.由類(lèi)比推理可得:在等比數(shù)列{bn}中,若其前n項(xiàng)的積為Pn,則P2n-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)從高中三個(gè)年級(jí)選派4名教師和20名學(xué)生去當(dāng)文明交通宣傳志愿者,20名學(xué)生的名額分配為高一12人,高二6人,高三2人.
(Ⅰ)若從20名學(xué)生中選出3人做為組長(zhǎng),求他們中恰好有1人是高一年級(jí)學(xué)生的概率;
(Ⅱ)若將4名教師隨機(jī)安排到三個(gè)年級(jí)(假設(shè)每名教師加入各年級(jí)是等可能的,且各位教師的選擇是相互獨(dú)立的),記安排到高一年級(jí)的教師人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的兩個(gè)不等式f(x)<0和g(x)<0的解集分別為(a,b)和(
1
b
,
1
a
),則稱這兩個(gè)不等式為“對(duì)偶不等式”.如果不等式x2-4
3
xcos2θ+2<0與不等式2x2+4xsin2θ+1<0為對(duì)偶不等式,且θ∈(0,
π
2
),則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是三角形的一個(gè)內(nèi)角,且sinα+cosα=
2
3
,那么這個(gè)三角形的形狀為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:2x2-3x+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1+lnx
x

(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的方程f(x)=x2-2x+k有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍;
(Ⅲ)當(dāng)n∈N*,n≥2時(shí),求證:nf(n)<2+
1
2
+
1
3
+…+
1
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義R上的奇函數(shù)f(x)滿足f(x+3)=f(x),當(dāng)0<x≤1時(shí),f(x)=2x,則f(2015)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案