解:(Ⅰ)由題設(shè)可得
因?yàn)楹瘮?shù)f(x)在[1,+∞)上是增函數(shù),所以當(dāng)x∈[1,+∞)時(shí),不等式,即恒成立
因?yàn)楫?dāng)x∈[1,+∞)時(shí),的最大值為1,所以實(shí)數(shù)a的取值范圍是[1,+∞)
(Ⅱ)a=1時(shí),,
所以,…
(1)若k=0,則,在上,恒有F'(x)<0,所以F(x)在上單調(diào)遞減
∴,
(2)k≠0時(shí),
(i)若k<0,在上,恒有,所以F(x)在上單調(diào)遞減
∴,
(ii)k>0時(shí),因?yàn)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/221761.png' />,所以,所以,所以F(x)在上單調(diào)遞減
∴,
綜上所述:當(dāng)k=0時(shí),,F(xiàn)(x)max=e-1;當(dāng)k≠0且時(shí),F(xiàn)(x)max=e-k-1,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北孝感高中高三年級(jí)九月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_ST.files/image002.png">,若在上為增函數(shù),則稱為“一階比增函數(shù)”;若在上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.
(Ⅰ)已知函數(shù),若且,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知,且的部分函數(shù)值由下表給出,
求證:;
(Ⅲ)定義集合
請(qǐng)問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省高三上學(xué)期10月月考文科數(shù)學(xué)卷 題型:選擇題
已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052222400076562750/SYS201205222241225937291841_ST.files/image002.png">,部分函數(shù)值如表所示,其導(dǎo)函數(shù)的圖象如圖所示,若正數(shù),滿足,則的取值范圍是( )
-3 |
0 |
6 |
|
1 |
1 |
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分
)已知函數(shù) ,(>0),若函
數(shù)的最小正周期為.
(1)求的值,并求函數(shù)的最大值;
(2)若0<x<,當(dāng)f(x)=時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)的定義域?yàn)?sub>,若在上為增函數(shù),則稱為“一階比增函數(shù)”;若在上為增函數(shù),則稱為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.
(Ⅰ)已知函數(shù),若且,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知,且的部分函數(shù)值由下表給出,
|
|
|
|
|
|
|
|
|
|
求證:;
(Ⅲ)定義集合
請(qǐng)問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)的定義域?yàn)?sub>,若在上為增函數(shù),則稱為“一階比增函數(shù)”;若在上為增函數(shù),則稱為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.
(Ⅰ)已知函數(shù),若且,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知,且的部分函數(shù)值由下表給出,
|
|
|
|
|
|
|
|
|
求證:;
(Ⅲ)定義集合
請(qǐng)問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com