【題目】空間四邊形ABCD中,若AB=AD=AC=CB=CD=BD,則AC與BD所成角為 (  )

A. 30° B. 45° C. 60° D. 90°

【答案】D

【解析】取AC中點E,連接BE,DE

因為:AB=AD=AC=CB=CD=BD

那么AC⊥BE,AC⊥DE

所以AC平面BDE,

因此AC⊥BD

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為解決困難職工的住房問題,決定分批建設保障性住房供給困難職工,首批計劃用100萬元購買一塊土地,該土地可以建造每層1000平方米的樓房一幢,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高20元,已知建筑第1層樓房時,每平方米的建筑費用為920元.為了使該幢樓房每平方米的平均費用最低費用包括建筑費用和購地費用,應把樓房建成幾層?此時平均費用為每平方米多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】側棱垂直于底面的棱柱叫做直棱柱.

側棱不垂直于底面的棱柱叫作斜棱柱.

底面是正多邊形的直棱柱叫作正棱柱.

底面是平行四邊形的四棱柱叫作平行六面體.

側棱與底面垂直的平行六面體叫作直平行六面體.

底面是矩形的直平行六面體叫作長方體.

棱長都相等的長方體叫作正方體.

請根據(jù)上述定義,回答下面的問題(填“一定”、“不一定”“一定不”):

(1)直四棱柱________是長方體;

(2)正四棱柱________是正方體.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P(1,2,3)關于xOz平面對稱的點的坐標是 (   )

A. (1,2,3) B. (1,-2,3)

C. (1,2,-3) D. (1,-2,-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條相交直線a,b,a∥平面α,則b與平面α的位置關系是 (  )

A. b平面α

B. b⊥平面α

C. b∥平面α

D. b與平面α相交,或b∥平面α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性,并加以證明;

(2)用定義證明函數(shù)在區(qū)間上為增函數(shù);

(3)若函數(shù)在區(qū)間上的最大值與最小值之和不小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù):

房屋面積xm2

115

110

80

135

105

銷售價格y萬元

248

216

184

292

22

1畫出數(shù)據(jù)對應的散點圖;

2求線性回歸方程,并在散點圖中加上回歸直線

參考公式=,=+,其中=60 975,=12 952

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,點在橢圓上,、分別為橢圓的左右頂點,過點軸交的延長線于點為橢圓的右焦點.

)求橢圓的方程及直線被橢圓截得的弦長;

)求證:以為直徑的圓與直線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的單調遞增區(qū)間;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調函數(shù).

查看答案和解析>>

同步練習冊答案