【題目】如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞著C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,CPD的面積為f(x).求f(x)的最大值(  ).

A.     B. 2

C.3     D.

【答案】A

【解析】

試題利用三角形的構(gòu)成條件,建立不等式,可求x的取值范圍;三角形的周長(zhǎng)是一個(gè)定值8,故其面積可用海倫公式表示出來(lái),再利用基本不等式,即可求f(x)的最大值.解:(1)由題意,DC=2,CP=x,DP=6-x,根據(jù)三角形的構(gòu)成條件可得x+6-x>2, 2+6-x>x, 2+x>6-x,解得2<x<4;三角形的周長(zhǎng)是一個(gè)定值8,故其面積可用海倫公式表示出來(lái),即f(x)=

當(dāng)且僅當(dāng)4-x=-2+x,即x=3時(shí),f(x)的最大值為,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線和拋物線相交于不同兩點(diǎn)AB.

I)求實(shí)數(shù)的取值范圍;

)設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F.以MF為直徑的圓與直線l相交于另一點(diǎn)N,且滿(mǎn)足,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(nN*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2b312,b3a42a1,S1111b4.

(1){an}{bn}的通項(xiàng)公式;

(2)求數(shù)列{a2nbn}的前n項(xiàng)和(nN*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四名同學(xué)組成一個(gè)4100米接力隊(duì),老師要安排他們四人的出場(chǎng)順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒.老師聽(tīng)了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿(mǎn)足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場(chǎng)順序中跑第三棒的人是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD,底面ABCD是正方形側(cè)面PAD⊥底面ABCD,PAPDAD,EF分別為PC,BD的中點(diǎn).

求證:(1)EF∥平面PAD;

(2)PA⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)的中點(diǎn).

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019531日晚,大連市某重點(diǎn)高中舉行一年一度的畢業(yè)季燈光表演.學(xué)生會(huì)共安排6名高一學(xué)生到學(xué)校會(huì)議室遮擋4個(gè)窗戶(hù),要求兩端兩個(gè)窗戶(hù)各安排1名學(xué)生,中間兩個(gè)窗戶(hù)各安排兩名學(xué)生,不同的安排方案共有(

A.720B.360C.270D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是指大氣中直徑小于或等于2.5微米的顆粒物,也稱(chēng)為可入肺顆粒物.我國(guó)標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米至75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2016年全年每天的監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示:(十位為莖,個(gè)位為葉)

1)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),求空氣質(zhì)量至少有一天達(dá)到一級(jí)的概率;

2)以這15天的日均值來(lái)估算一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中大致有多少天的空氣質(zhì)量達(dá)到一級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿(mǎn)足下列條件的曲線方程

1)已知橢圓以坐標(biāo)軸為對(duì)稱(chēng)軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,點(diǎn)在該橢圓上,求橢圓的方程.

2)已知雙曲線的離心率為,焦點(diǎn)是,求雙曲線標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案