已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若存在使不等式成立,求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
(Ⅲ)

解析試題分析:(Ⅰ)將代入原函數(shù)求,即得切點(diǎn)坐標(biāo),先將原函數(shù)求導(dǎo)再將代入導(dǎo)函數(shù)求,根據(jù)導(dǎo)數(shù)的幾何意義可知即為切線在點(diǎn)處切線的斜率,根據(jù)直線方程的點(diǎn)斜式即可求得切線方程。(Ⅱ)先求導(dǎo)數(shù),及其零點(diǎn),判斷導(dǎo)數(shù)符號(hào),即可得原函數(shù)增減區(qū)間。(Ⅲ)時(shí)可將變形為,若存在使不等式成立,則只需大于上的最小值即可。即將不等式問題轉(zhuǎn)化為求函數(shù)最值問題
試題解析:解:(Ⅰ).                      1分
,                                2分
所以曲線在點(diǎn)處的切線方程為.       3分
(Ⅱ).
,即,解得.                     5分
時(shí),時(shí),,
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.       7分
(Ⅲ)由題意知使成立,即使成立;8分
所以                   9分
,
所以上單調(diào)遞減,在上單調(diào)遞增,
,                                   12分
所以.                                     13分
考點(diǎn):1導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義;2利用導(dǎo)數(shù)研究函數(shù)性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2xsin x+cos x.
(1)若曲線yf(x)在點(diǎn)(a,f(a))處與直線yb相切,求ab的值;
(2)若曲線yf(x)與直線yb有兩個(gè)不同交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實(shí)數(shù)t的取值范圍;
(2)證明:<ln,其中0<a<b;
(3)設(shè)[x]表示不超過x的最大整數(shù),證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:;
(Ⅲ)設(shè),對(duì)于任意時(shí),總存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b為常數(shù),a¹0,函數(shù)
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分) 已知函數(shù)為自然對(duì)數(shù)的底數(shù))。
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使函數(shù)上是單調(diào)增函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由。恒成立,則,又,

查看答案和解析>>

同步練習(xí)冊(cè)答案