(本小題13分) 已知函數(shù)為自然對(duì)數(shù)的底數(shù))。
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使函數(shù)上是單調(diào)增函數(shù)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。恒成立,則,又

解析試題分析:(1)首先求導(dǎo),然后根據(jù)>0或<0求得函數(shù)的單調(diào)增區(qū)間或減區(qū)間;(2)由0在R上恒成立,求出滿足條件的a即可.
試題解析:(1)當(dāng)a=-1時(shí),,則,由>0解得x>1或x<-2,由<0解得-2<x<1,所以的增區(qū)間為,減區(qū)間為;
(2),由對(duì)于
恒成立,=,解得.
考點(diǎn):1.函數(shù)的導(dǎo)數(shù);2.導(dǎo)數(shù)的性質(zhì);3.不等式恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)在函數(shù)的圖像上,且過(guò)點(diǎn)的切線的斜率為kn
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),函數(shù)在閉區(qū)間上的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),設(shè)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間
(Ⅱ)若以函數(shù)圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值
(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有四個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線.
(Ⅰ)當(dāng)時(shí),求曲線的斜率為1的切線方程;
(Ⅱ)設(shè)斜率為的兩條直線與曲線相切于兩點(diǎn),求證:中點(diǎn)在曲線上;
(Ⅲ)在(Ⅱ)的條件下,又已知直線的方程為:,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,(其中),設(shè).
(Ⅰ)當(dāng)時(shí),試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當(dāng)時(shí),若存在,使成立,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若點(diǎn)是動(dòng)點(diǎn)的軌跡上的一點(diǎn),軸上的一動(dòng)點(diǎn),試討論直線與圓的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案