【題目】在三棱錐中,,二面角、的大小均為,設(shè)三棱錐的外接球球心為,直線交平面于點(diǎn),則三棱錐的內(nèi)切球半徑為_________________________

【答案】

【解析】

平面,垂足為,則由已知內(nèi)心,由直角三角形的性質(zhì)求得內(nèi)切圓半徑從而可得,由此用體積法求得內(nèi)切球半徑,過斜邊中點(diǎn)作平面的垂線,則外接球球心在此垂線上,只是要確定在平面的哪一側(cè),可分類討論,同時由垂直得平行,從而得共線,求出外接球半徑,求得后可得結(jié)論.

如圖,作平面,垂足為,過,連接,由平面,平面,得,同理,又,所以平面,而平面,所以,所以為二面角的平面角,所以,所以

     圖1

又面角、的大小均為,所以三邊距離相等,點(diǎn)到的距離也相等,所以的內(nèi)心,

因?yàn)?/span>,所以,,

所以,從而,,

,

,,,

所以三棱錐的全面積為,

設(shè)內(nèi)切球半徑為,則,所以

設(shè)中點(diǎn),則外心,所以平面,所以,則共線,

在直角中,以軸建立平面直角坐標(biāo)系,由,,∴,

設(shè)三棱錐外接球半徑為,即,若在圖1位置所示,由直角梯形和直角*),解得與(*)式不合,

2

如圖2位置所示,則,解得,此時,

,∴

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費(fèi),超過的部分按議價收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;

(Ⅱ)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為之間選取7戶居民作為議價水費(fèi)價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設(shè)為用水量噸數(shù)在中的獲獎的家庭數(shù),為用水量噸數(shù)在中的獲獎家庭數(shù),記隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中ABCA1B1C1,ABACAB3,AC4,B1CAC1

1)求AA1的長;

2)試判斷在側(cè)棱BB1上是否存在點(diǎn)P,使得直線PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了釋放學(xué)生壓力,某校高三年級一班進(jìn)行了一個投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.

1)經(jīng)過輪投籃,記甲的得分為,求的分布列及期望;

2)若經(jīng)過輪投籃,用表示第輪投籃后,甲的累計得分低于乙的累計得分的概率.

①求;

②規(guī)定,經(jīng)過計算機(jī)模擬計算可得,請根據(jù)①中值求出的值,并由此求出數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知,,、分別為、的中點(diǎn),將沿折起,得到四棱錐的中點(diǎn).

1)證明:平面;

2)當(dāng)正視圖方向與向量的方向相同時,的正視圖為直角三角形,求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)某中學(xué)理學(xué)社為了吸收更多新社員,在校團(tuán)委的支持下,在高一學(xué)年組織了抽簽贈書活動.月初報名,月末抽簽,最初有30名同學(xué)參加.社團(tuán)活動積極分子甲同學(xué)參加了活動.

①第一個月有18個中簽名額.甲先抽簽,乙和丙緊隨其后抽簽.求這三名同學(xué)同時中簽的概率.

②理學(xué)社設(shè)置了第()個月中簽的名額為,并且抽中的同學(xué)退出活動,同時補(bǔ)充新同學(xué),補(bǔ)充的同學(xué)比中簽的同學(xué)少2個,如果某次抽簽的同學(xué)全部中簽,則活動立刻結(jié)束.求甲同學(xué)參加活動時間的期望.

2)某出版集團(tuán)為了擴(kuò)大影響,在全國組織了抽簽贈書活動.報名和抽簽時間與(1)中某中學(xué)理學(xué)社的報名和抽簽時間相同,最初有30萬人參加,甲同學(xué)在其中.每個月抽中的人退出活動,同時補(bǔ)充新人,補(bǔ)充的人數(shù)與中簽的人數(shù)相同.出版集團(tuán)設(shè)置了第()個月中簽的概率為,活動進(jìn)行了個月,甲同學(xué)很幸運(yùn),中簽了,在此條件下,求證:甲同學(xué)參加活動時間的均值小于個月.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,為橢圓上任意一點(diǎn),當(dāng)時,的面積為,且.

1)求橢圓的方程;

2)已知直線經(jīng)點(diǎn),與橢圓交于不同的兩點(diǎn)、,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,設(shè)直線過橢圓的上頂點(diǎn)和右焦點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為2.

1)求橢圓的方程.

2)過點(diǎn)且斜率不為零的直線交橢圓兩點(diǎn),在軸的正半軸上是否存在定點(diǎn),使得直線,的斜率之積為非零的常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哈三中總務(wù)處的老師要購買學(xué)校教學(xué)用的粉筆,并且有非常明確的判斷一盒粉筆是優(yōu)質(zhì)產(chǎn)品非優(yōu)質(zhì)產(chǎn)品的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據(jù)以往的經(jīng)驗(yàn),其中會有某些盒的粉筆為非優(yōu)質(zhì)產(chǎn)品,其余的都為優(yōu)質(zhì)產(chǎn)品.并且每箱含有0,1,2盒非優(yōu)質(zhì)產(chǎn)品粉筆的概率為0.70.20.1.為了購買該品牌的粉筆,?倓(wù)主任設(shè)計了一種購買的方案:欲買一箱粉筆,隨機(jī)查看該箱的4盒粉筆,如果沒有非優(yōu)質(zhì)產(chǎn)品,則購買,否則不購買.設(shè)買下所查看的一箱粉筆為事件,箱中有件非優(yōu)質(zhì)產(chǎn)品為事件.

1)求,;

2)隨機(jī)查看該品牌粉筆某一箱中的四盒,設(shè)為非優(yōu)質(zhì)產(chǎn)品的盒數(shù),求的分布列及期望;

3)若購買100箱該品牌粉筆,如果按照主任所設(shè)計方案購買的粉筆中,箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望比隨機(jī)購買的箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望大10,則所設(shè)計的方案有效.討論該方案是否有效.

查看答案和解析>>

同步練習(xí)冊答案