【題目】為了釋放學(xué)生壓力,某校高三年級(jí)一班進(jìn)行了一個(gè)投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.

1)經(jīng)過(guò)輪投籃,記甲的得分為,求的分布列及期望;

2)若經(jīng)過(guò)輪投籃,用表示第輪投籃后,甲的累計(jì)得分低于乙的累計(jì)得分的概率.

①求;

②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)模擬計(jì)算可得,請(qǐng)根據(jù)①中值求出的值,并由此求出數(shù)列的通項(xiàng)公式.

【答案】1)見(jiàn)解析,2)①,.

【解析】

1)先閱讀題意,可得的可能取值為,然后求出對(duì)應(yīng)的概率,然后求出的分布列及期望即可;

2)結(jié)合題意求出,然后求出的值,再利用累加法求數(shù)列的通項(xiàng)公式即可.

解:(1的可能取值為,

;

;

.

的分布列為:

1

0

1

期望.

即經(jīng)過(guò)輪投籃,甲得分的期望為.

2)①由(1)知,

經(jīng)過(guò)兩輪投球,甲的累計(jì)得分低的有兩種情況:

一是甲兩輪都得分為;二是兩輪中甲一輪得分,另一輪得分,則.

經(jīng)過(guò)三輪投球,甲累計(jì)得分低有四種情況:;;;

;

②將的值分別代入,

.

,即

,所以是首項(xiàng)、公比都是的等比數(shù)列.

,

∴數(shù)列的通項(xiàng)公式為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).

1)求不等式的解集;

2)若函數(shù)有兩個(gè)極值點(diǎn),()(若是函數(shù)的極大值或極小值,則m為函數(shù)的極值點(diǎn),極大值點(diǎn)與極小值點(diǎn)統(tǒng)稱為極值點(diǎn)).

①求a的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時(shí),求函數(shù)的極值;

2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,分別為的中點(diǎn),的一個(gè)三等分點(diǎn)(靠近點(diǎn)).將沿折起,記折起后點(diǎn),連接上的一點(diǎn),且,連接

1)求證:平面;

2)若,直線與平面所成的角為,當(dāng)最大時(shí),求,并計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)fx)=exaex+2sinx滿足,則zxlny的最小值是(

A.ln6B.2C.ln6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,,二面角、的大小均為,設(shè)三棱錐的外接球球心為,直線交平面于點(diǎn),則三棱錐的內(nèi)切球半徑為_________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新《水污染防治法》已由中華人民共和國(guó)第十二屆全國(guó)人民代表大會(huì)常務(wù)委員會(huì)第二十八次會(huì)議于2017627日通過(guò),自201811日起施行.201831日,某縣某質(zhì)檢部門(mén)隨機(jī)抽取了縣域內(nèi)100眼水井,檢測(cè)其水質(zhì)總體指標(biāo).

羅斯水質(zhì)指數(shù)

02

24

46

68

810

水質(zhì)狀況

腐敗污水

嚴(yán)重污染

污染

輕度污染

純凈

1)求所抽取的100眼水井水質(zhì)總體指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

2)①由直方圖可以認(rèn)為,100眼水井水質(zhì)總體指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在(5.21,5.99)內(nèi)的概率;

②將頻率視為概率,若某鄉(xiāng)鎮(zhèn)抽查5眼水井的水質(zhì),記這5眼水井水質(zhì)總體指標(biāo)值位于(6,10)內(nèi)的井?dāng)?shù)為,求的分布列和數(shù)學(xué)期望.

附:①計(jì)算得所抽查的這100眼水井總體指標(biāo)的標(biāo)準(zhǔn)差為

②若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓.

(Ⅰ)若的一個(gè)焦點(diǎn)為,且點(diǎn)上,求橢圓的方程;

(Ⅱ)已知上有兩個(gè)動(dòng)點(diǎn)為坐標(biāo)原點(diǎn),且,求線段的最小值(用表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案