【題目】已知定義在R上的奇函數(shù)fx)=exaex+2sinx滿足,則zxlny的最小值是(

A.ln6B.2C.ln6D.2

【答案】B

【解析】

由已知可求a,然后對函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可判斷函數(shù)的單調(diào)性,進(jìn)而可得關(guān)于xy的不等式組,結(jié)合線性規(guī)劃知識即可求解

解:由題意f0)=1a0可得a1,

所以fx)=exex+2sinx,2+2cosx0,

fx)在R上單調(diào)遞增,則

作出可行域如圖所示,其中A0,),B0,3),C),

設(shè)yexz,則由圖象可知,設(shè)yx+3yexz相切于點(diǎn)Dx0y0),

y′=exz,令1可得x0z,,

yx+3yexz相切于點(diǎn)D(﹣21)時(shí),z取得最小值zmin=﹣2.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=Asinωx)(A0,ω0,0φπ)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,又,且銳角C滿足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其焦點(diǎn)到準(zhǔn)線的距離為2.直線與拋物線交于兩點(diǎn),過,分別作拋物線的切線,交于點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了釋放學(xué)生壓力,某校高三年級一班進(jìn)行了一個(gè)投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.

1)經(jīng)過輪投籃,記甲的得分為,求的分布列及期望;

2)若經(jīng)過輪投籃,用表示第輪投籃后,甲的累計(jì)得分低于乙的累計(jì)得分的概率.

①求;

②規(guī)定,經(jīng)過計(jì)算機(jī)模擬計(jì)算可得,請根據(jù)①中值求出的值,并由此求出數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點(diǎn),線段的中點(diǎn)為,且直線與直線的斜率之積為.若直線與直線交于點(diǎn),與直線交于點(diǎn),且點(diǎn)為直線上一點(diǎn).

1)求的軌跡方程;

2)若為橢圓的上頂點(diǎn),直線軸交點(diǎn),記表示面積,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)某中學(xué)理學(xué)社為了吸收更多新社員,在校團(tuán)委的支持下,在高一學(xué)年組織了抽簽贈(zèng)書活動(dòng).月初報(bào)名,月末抽簽,最初有30名同學(xué)參加.社團(tuán)活動(dòng)積極分子甲同學(xué)參加了活動(dòng).

①第一個(gè)月有18個(gè)中簽名額.甲先抽簽,乙和丙緊隨其后抽簽.求這三名同學(xué)同時(shí)中簽的概率.

②理學(xué)社設(shè)置了第()個(gè)月中簽的名額為,并且抽中的同學(xué)退出活動(dòng),同時(shí)補(bǔ)充新同學(xué),補(bǔ)充的同學(xué)比中簽的同學(xué)少2個(gè),如果某次抽簽的同學(xué)全部中簽,則活動(dòng)立刻結(jié)束.求甲同學(xué)參加活動(dòng)時(shí)間的期望.

2)某出版集團(tuán)為了擴(kuò)大影響,在全國組織了抽簽贈(zèng)書活動(dòng).報(bào)名和抽簽時(shí)間與(1)中某中學(xué)理學(xué)社的報(bào)名和抽簽時(shí)間相同,最初有30萬人參加,甲同學(xué)在其中.每個(gè)月抽中的人退出活動(dòng),同時(shí)補(bǔ)充新人,補(bǔ)充的人數(shù)與中簽的人數(shù)相同.出版集團(tuán)設(shè)置了第()個(gè)月中簽的概率為,活動(dòng)進(jìn)行了個(gè)月,甲同學(xué)很幸運(yùn),中簽了,在此條件下,求證:甲同學(xué)參加活動(dòng)時(shí)間的均值小于個(gè)月.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊與直角梯形所在的平面互相垂直,且,.

1)證明:直線平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,的導(dǎo)函數(shù).

1)討論的單調(diào)性,設(shè)的最小值為,并求證:

2)若有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案