【題目】已知三棱錐的棱長均為6,其內有個小球,球與三棱錐的四個面都相切,球與三棱錐的三個面和球都相切,如此類推,…,球與三棱錐的三個面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1是菱形,且CA=CB1.
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求二面角C﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:
分數(shù)不少于120分 | 分數(shù)不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;
(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標準方程;
(2)若過橢圓左焦點的直線交橢圓于兩點,點在軸非負半軸上,且點到坐標原點的距離為2,求取得最大值時的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和,對任意,都有(為常數(shù)).
(1)當時,求;
(2)當時,
(。┣笞C:數(shù)列是等差數(shù)列;
(ⅱ)若對任意,必存在使得,已知,且,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:
(1)試問這3年的前7個月中哪個月的月平均利潤最高?
(2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;
(3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.
月份x | 1 | 2 | 3 | 4 |
利潤y(單位:百萬元) | 4 | 4 | 6 | 6 |
相關公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】多面體歐拉定理是指對于簡單多面體,其各維對象數(shù)總滿足一定的數(shù)量關系,在三維空間中,多面體歐拉定理可表示為:頂點數(shù)+表面數(shù)-棱長數(shù)=2.在數(shù)學上,富勒烯的結構都是以正五邊形和正六邊形面組成的凸多面體,例如富勒烯(結構圖如圖)是單純用碳原子組成的穩(wěn)定分子,具有60個頂點和32個面,其中12個為正五邊形,20個為正六邊形.除外具有封閉籠狀結構的富勒烯還可能有,,,,,,,等,則結構含有正六邊形的個數(shù)為( )
A.12B.24C.30D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,點,()在曲線C:上,直線l過點且與垂直,垂足為P.
(Ⅰ)當時,求在直角坐標系下點P坐標和l的方程;
(Ⅱ)當M在C上運動且P在線段上時,求點P在極坐標系下的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·衢州調研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com