【題目】過(guò)軸上動(dòng)點(diǎn)引拋物線的兩條切線、, 、為切點(diǎn),設(shè)切線、的斜率分別為和.
(Ⅰ)求證: ;
(Ⅱ)求證:直線恒過(guò)頂點(diǎn),并求出此定點(diǎn)坐標(biāo);
【答案】(1)見(jiàn)解析;(2)直線過(guò)定點(diǎn),證明見(jiàn)解析.
【解析】試題分析:(Ⅰ)設(shè)過(guò)與拋物線的相切的直線的斜率是,則該切線的方程為,將直線方程代入拋物線的方程化簡(jiǎn)得,由得,而都是方程的解,故;(Ⅱ)法1:設(shè),由導(dǎo)數(shù)的幾何意義求出切線的斜率,由點(diǎn)斜式寫(xiě)出切線方程并化簡(jiǎn)變形得切線方程為,切線方程為,又由于點(diǎn)在AP、AQ上,所以, ,則直線的方程是,則直線過(guò)定點(diǎn).;法2:由(1)知P、Q的橫坐標(biāo)是方程的根,可設(shè),由兩點(diǎn)坐標(biāo)求得PQ的方程并化簡(jiǎn)為即,由(1)知,所以直線的方程是,則直線過(guò)定點(diǎn).
試題解析:(Ⅰ)設(shè)過(guò)與拋物線的相切的直線的斜率是,
則該切線的方程為: ,由得
,
則都是方程的解,故。
(Ⅱ)法1:設(shè),
故切線的斜率是,方程是又,
所以方程可化為,
切線的斜率是,方程是又,
所以方程可化為,
又由于點(diǎn)在AP上,則,
又由于點(diǎn)在AQ上,則,
,
則直線的方程是,則直線過(guò)定點(diǎn).
法2:設(shè), 所以,
直線: ,
即,由(1)知,
所以,直線的方程是,則直線過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體 為一簡(jiǎn)單組合體,在底面 中, , , , 平面 , , , .
(1)求證:平面 平面 ;
(2)求該組合體 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,過(guò)點(diǎn)作圓的切線交橢圓于、兩點(diǎn).
(Ⅰ)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)將表示成的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是公差不為零的等差數(shù)列, 是等比數(shù)列,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和;
(3)若滿足不等式成立的恰有個(gè),求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知?jiǎng)又本過(guò)點(diǎn),且與圓交于、兩點(diǎn).
(1)若直線的斜率為,求的面積;
(2)若直線的斜率為,點(diǎn)是圓上任意一點(diǎn),求的取值范圍;
(3)是否存在一個(gè)定點(diǎn)(不同于點(diǎn)),對(duì)于任意不與軸重合的直線,都有平分,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有.
(1)證明在上是增函數(shù);
(2)解不等式;
(3)若對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實(shí)數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()若關(guān)于的不等式的解集為,求實(shí)數(shù)的取值范圍.
()若關(guān)于的不等式的解集是,求,的值.
()若關(guān)于的不等式的解集是,集合,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com