3.不等式|x+1|-|x-3|≤4的解集為R.

分析 根據(jù)絕對值的性質(zhì)求出|x+1|-|x-3|的最大值,從而求出不等式的解集即可.

解答 解:|x+1|-|x-3|≤|x+1-x+3|=4,
故不等式的解集是R,
故答案為:R.

點(diǎn)評 本題考查了解絕對值不等式問題,考查絕對值的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,兩個(gè)工廠A,B相距8(單位:百米),O為AB的中點(diǎn),曲線段MN上任意一點(diǎn)P到A,B的距離之和為10(單位:百米),且MA⊥AB,NB⊥AB.現(xiàn)計(jì)劃在P處建一公寓,需考慮工廠A,B對它的噪音影響.工廠A對公寓的“噪音度”與距離AP成反比,比例系數(shù)為1;工廠B對公寓的“噪音度”與距離BP成反比,比例系數(shù)為k.“總噪音度”y是兩個(gè)工廠對公寓的“噪音度”之和.經(jīng)測算:當(dāng)P在曲線段MN的中點(diǎn)時(shí),“總噪音度”y恰好為1.
(Ⅰ)設(shè)AP=x(單位:百米),求“總噪音度”y關(guān)于x的函數(shù)關(guān)系式,并求出該函數(shù)的定義域;
(Ⅱ)當(dāng)AP為何值時(shí),“總噪音度”y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,既是奇函數(shù)又在定義域內(nèi)單調(diào)遞增的是( 。
A.y=x3B.y=tanxC.$y={(\frac{1}{2})^x}$D.y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)點(diǎn)A,B的坐標(biāo)分別為(4,0),(-4,0),直線AP,BP相交于點(diǎn)P,且它們的斜率之積為實(shí)數(shù)m,關(guān)于點(diǎn)P的軌跡下列說法正確的是(  )
A.當(dāng)m<-1時(shí),軌跡為焦點(diǎn)在x軸上的橢圓(除與x軸的兩個(gè)交點(diǎn))
B.當(dāng)-1<m<0時(shí),軌跡為焦點(diǎn)在y軸上的橢圓(除與y軸的兩個(gè)交點(diǎn))
C.當(dāng)m>0時(shí),軌跡為焦點(diǎn)在x軸上的雙曲線(除與x軸的兩個(gè)交點(diǎn))
D.當(dāng)0<m<1時(shí),軌跡為焦點(diǎn)在y軸上的雙曲線(除與y軸的兩個(gè)交點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若f(x)=2cos(ωx+φ)+k,對任意實(shí)數(shù)t都有$f(\frac{π}{3}+t)=f(\frac{π}{3}-t)$成立,且$f(\frac{π}{3})=-1$,則實(shí)數(shù)k的值等于(  )
A.-3或1B.1C.-1或3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=xsinx,則$f'({\frac{π}{4}})$=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{{x}^{2}+1}$.
(I)求f(0),f(1);
(II)求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足

(1)求

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

擲一枚均勻的硬幣兩次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.下列結(jié)果正確的是( )

A.P(M)=,P(N)=

B.P(M)=,P(N)=

C.P(M)=,P(N)=

D.P(M)=,P(N)=

查看答案和解析>>

同步練習(xí)冊答案