9.已知圓x2+y2=10,則以點(diǎn)P(1,1)為中點(diǎn)的弦所在直線方程為( 。
A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=0

分析 求出kOP=1,即可求出以點(diǎn)P(1,1)為中點(diǎn)的弦所在直線方程.

解答 解:x2+y2=10的圓心為(0,0),則kOP=1,
∴以點(diǎn)P(1,1)為中點(diǎn)的弦所在直線方程為y-1=-(x-1),即x+y-2=0.
故選A.

點(diǎn)評(píng) 本題考查軌跡方程,求出kOP=1是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.指數(shù)函數(shù)y=ax、y=bx、y=cx、y=dx在同一坐標(biāo)系中的圖象如圖所示,則a,b,c,d與1的大小關(guān)系為( 。
A.0<a<b<1<c<dB.0<a<b<1<d<cC.1<a<b<c<dD.0<b<a<1<d<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),若$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow b$|=( 。
A.5B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)g(x)=x2-2x+1+mlnx,(m∈R).
(1)當(dāng)m=1時(shí),求函數(shù)y=g(x)在點(diǎn)(1,0)處的切線方程;
(2)當(dāng)m=-12時(shí),求f(x)的極小值;
(3)若函數(shù)y=g(x)在x∈($\frac{1}{4}$,+∞)上的兩個(gè)不同的數(shù)a,b(a<b)處取得極值,記{x}表示大于x的最小整數(shù),求{g(a)}-{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.中心在原點(diǎn),一焦點(diǎn)為${F_1}(0,-5\sqrt{2})$的橢圓截直線y=3x-2所得弦的中點(diǎn)的橫坐標(biāo)為$\frac{1}{2}$,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F1(1,0),離心率為e.設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,原點(diǎn)O在以線段MN為直徑的圓上.若直線AB的傾斜角α∈(0,$\frac{π}{3}$),則e的取值范圍是[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=4x2-kx-8在[2,10]上具有單調(diào)性,則k的取值范圍是( 。
A.(-∞,-80]∪[-16,+∞)B.[-80,-16]C.(-∞,16]∪[80,+∞)D.[16,80]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,9),那么函數(shù)f(x)的單調(diào)增區(qū)間是( 。
A.[3,+∞)B.[0,+∞)C.(-∞,0]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求值:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
(2)已知x+$\frac{1}{x}$=3,求x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案