【題目】設(shè)f(x)=esinx+e﹣sinx(x∈R),則下列說法不正確的是( )
A.f(x)為R上偶函數(shù)
B.π為f(x)的一個周期
C.π為f(x)的一個極小值點(diǎn)
D.f(x)在區(qū)間 上單調(diào)遞減
【答案】D
【解析】解:A.∵f(x)=esinx+e﹣sinx,
∴f(﹣x)=esin(﹣x)+e﹣sin(﹣x)=esinx+e﹣sinx=f(x),
即f(x)為R上偶函數(shù),故A不符合題意;
B.f(x+π)=esin(x+π)+e﹣sin(x+π)esinx+e﹣sinx=f(x),
故π為f(x)的一個周期,故B不符合題意;
C.f′(x)=cosx(esinx﹣e﹣sinx),
當(dāng)x∈( ,π)時,f′(x)<0,當(dāng)x∈(π, )時,f′(x)>0,
故π為f(x)的一個極小值點(diǎn),故C不符合題意;
D.x∈ 時,f′(x)>0,
故f(x)在區(qū)間 上單調(diào)遞增,故D符合題意;
所以答案是:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱),還要掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( )
A.f(x)=|x|﹣4
B.y=
C.y=
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體S﹣ABC中,若P為棱SC的中點(diǎn),那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為拋物線E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(3,m)在拋物線E上,且|AF|=4.
(1)求拋物線E的方程;
(2)已知點(diǎn)G(﹣1,0),延長AF交拋物線E于點(diǎn)B,證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(1)若F(x)=f(x)+b,函數(shù)F(x)在x=1處的切線方程為2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中a>0.
(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最小值.(其中e是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設(shè)bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列(要指出首項(xiàng)、公比);
(2)若cn=nbn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)n∈N*時, ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A=[﹣1,3],B=[m,m+6](m∈R).
(1)當(dāng)m=2時,求A∩(RB);
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com