【題目】已知函數(shù) (其中a為非零實數(shù)),且方程 有且僅有一個實數(shù)根. (Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.
【答案】解:(Ⅰ)由 ,得 ,
又a≠0,即二次方程ax2﹣4x+4﹣a=0有且僅有一個實數(shù)根(且該實數(shù)根非零),
所以△=(﹣4)2﹣4a(4﹣a)=0,
解得a=2(此時實數(shù)根非零).
(Ⅱ)由(Ⅰ)得:函數(shù)解析式 ,
任取0<x1<x2,
則f(x1)﹣f(x2)
=
= ,
∵0<x1<x2,∴x2﹣x1>0,2+x1x2>0,x1x2>0,
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
∴函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.
【解析】(Ⅰ)根據(jù)二次函數(shù)的性質(zhì)得到△=0,求出a的值即可;(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性即可.
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點A(0,1)為直角頂點,作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點,點P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.
(1)求該拋物線方程;
(2)若AB的中點坐標(biāo)為(1,﹣1),求直線AB方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為實數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求函數(shù)f(x)的極值;
(2)求證:當(dāng)a>ln2﹣1且x>0時,ex>2x﹣2a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點P(m,n)的直線l與直線l0:x+2y+4=0垂直. (Ⅰ) 若 ,且點P在函數(shù) 的圖象上,求直線l的一般式方程;
(Ⅱ) 若點P(m,n)在直線l0上,判斷直線mx+(n﹣1)y+n+5=0是否經(jīng)過定點?若是,求出該定點的坐標(biāo);否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)經(jīng)過點(1, ),且離心率等于 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(2,0)作直線PA,PB交橢圓于A,B兩點,且滿足PA⊥PB,試判斷直線AB是否過定點,若過定點求出點坐標(biāo),若不過定點請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點是A(4,0),B(6,7),C(0,3).
(1)求過點A與BC平行的直線方程.
(2)求過點B,并且在兩個坐標(biāo)軸上截距相等的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com