精英家教網 > 高中數學 > 題目詳情

【題目】根據統(tǒng)計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數據的散點圖,如圖所示.

(1)依據數據的散點圖可以看出,可用線性回歸模型擬合的關系,請計算相關系數并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);

(2)求關于的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產量的增加量約為多少?

附:相關系數公式,參考數據:.

回歸方程中斜率和截距的最小二乘估計公式分別為:,

【答案】(1);(2),6.1百千克.

【解析】

1)直接利用相關系數的公式求相關系數,再根據相關系數的大小判斷可用線性回歸模型擬合的關系.(2)利用最小二乘法求回歸方程,再利用回歸方程預測得解.

(1)由已知數據可得,.

所以,

,

,

所以相關系數.

因為,所以可用線性回歸模型擬合的關系.

(2).

那么.

所以回歸方程為.

時,,

即當液體肥料每畝使用量為12千克時,西紅柿畝產量的增加量約為6.1百千克.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列結論中:

定義在R上的函數f(x)在區(qū)間(-∞,0]上是增函數,在區(qū)間[0,+∞)上也是增函數,則函數f(x)R上是增函數;f(2)=f(-2),則函數f(x)不是奇函數;函數y=x-0.5(0,1)上的減函數;對應法則和值域相同的函數的定義域也相同;x0是二次函數y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結論的序號:_____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 的一段圖像如圖所示.

(1)求此函數的解析式;

(2)求此函數在上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學習小組在暑期社會實踐活動中,通過對某商店一種商品銷售情況的調查發(fā)現(xiàn):該商品在過去的一個月內(以30天計)的日銷售價格(元)與時間(天)的函數關系近似滿足為正常數).該商品的日銷售量(個)與時間(天)部分數據如下表所示:

(天)

10

20

25

30

(個)

110

120

125

120

已知第10天該商品的日銷售收入為121.

I)求的值;

II)給出以下二種函數模型:

,②,

請你根據上表中的數據,從中選擇你認為最合適的一種函數來描述該商品的日銷售量與時間的關系,并求出該函數的解析式;

III)求該商品的日銷售收入(元)的最小值.

(函數,在區(qū)間上單調遞減,在區(qū)間上單調遞增.性質直接應用.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著科技的發(fā)展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)

經常網購

偶爾或不用網購

合計

男性

50

100

女性

70

100

合計

(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;

②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某神奇“黃金數學草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠.

(1)求第3階段“黃金數學草”的高度;

(2)求第13階段“黃金數學草”的高度;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(0<φ<π)

(1)當φ時,在給定的坐標系內,用“五點法”做出函數f(x)在一個周期內的圖象;

(2)若函數f(x)為偶函數,求φ的值;

(3)在(2)的條件下,求函數在[﹣π,π]上的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)試作出的圖象,并根據圖象寫出的單調區(qū)間;

(2)若函數有兩個零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數, 為參加測試的總人數.現(xiàn)對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:

題號

1

2

3

4

5

考前預估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

學生編號 題號

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;

題號

1

2

3

4

5

實測答對人數

實測難度

(Ⅱ)從編號為155人中隨機抽取2人,求恰好有1人答對第5題的概率;

Ⅲ)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.

查看答案和解析>>

同步練習冊答案