數(shù)列{an},滿足a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
a1
+
1
a2
+…+
1
an
,?n∈N*,m∈[-1,1]
,t2-2mt-
15
2
bn
恒成立,求t的取值范圍.
考點(diǎn):數(shù)列與不等式的綜合
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用疊加法求數(shù)列{an}的通項(xiàng)公式;
(2)利用裂項(xiàng)求和法求出和,最后利用不等式恒成立的條件即可獲得問(wèn)題的解答.
解答: 解:(1)∵an-an-1-2n=0,
∴an-an-1=2n,
∴a2-a1=2×2,
a3-a2=2×3,

an-an-1=2n,
疊加可得an-a1=2(2+3…+n),
∵a1=2,
∴an=n2+n;
(2)∵an=n2+n,∴
1
an
=
1
n
-
1
n+1

∴bn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1

∵t2-2mt-
15
2
bn
恒成立,
∴t2-2mt-
15
2
1
2
,
∴t2-2mt-8<0,
∵m∈[-1,1],
t2-2t-8<0
t2+2t-8<0
,
∴-2<t<2.
點(diǎn)評(píng):本題考查的是數(shù)列通項(xiàng)的求法與不等式的綜合問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了解方程的思想、裂項(xiàng)求和法等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,已知a1a5a9=8,那么a5=( 。
A、2B、6C、8D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知甲乙進(jìn)行游戲,甲勝的概率為0.8,乙勝的概率為0.2,若共進(jìn)行10場(chǎng)游戲,問(wèn)甲至少贏2場(chǎng)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn).
(1)求證:BD⊥AE;
(2)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2sin(2x+
π
3
),
(1)求y的最大值及取得最大值時(shí)x的集合.
(2)用五點(diǎn)法作出它在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;
(3)說(shuō)明y=2sin(2x+
π
3
)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)各項(xiàng)為正的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:2Sn=an•(an+1);數(shù)列{bn}滿足:bn-bn-1=an-1(n≥2,n∈N*),且b1=1.
(1)求an和bn
(2)設(shè)Tn為數(shù)列{
1
bn+2n
}的前n項(xiàng)和,若Tn≤λan+1對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn;
(3)求滿足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
2013
2014
的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n的和Sn,且3tSn-(2t+3)Sn-1=3t,其中t>0,n∈N*,n≥2.nnnn
(1)求證:數(shù)列{an}是等比數(shù)列.
(2)設(shè)數(shù)列{an}的公比為f(t),數(shù)列b1=1,bn=f(
1
bn-1
)(n≥2)
,求數(shù)列{bn}的通項(xiàng).
(3)記Tn=b1b2-b2b3+b3b4-b4b5+…-b2nb2n+1,求證:Tn≤-
20
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=an+2n+1,且n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
2n+1
anan+1
,數(shù)列{bn}的前n項(xiàng)和為Tn.如果對(duì)于任意的n∈N*,都有Tn>m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案