【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)2,,如表所示:
試銷單價(jià)元 | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量件 | 90 | 84 | 83 | 80 | q | 68 |
已知.
求表格中q的值;
已知變量x,y具有線性相關(guān)性,試?yán)米钚《朔ㄔ,求產(chǎn)品銷量y關(guān)于試銷單價(jià)x的線性回歸方程參考數(shù)據(jù);
用中的回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值記為2,,當(dāng)時(shí),則稱為一個(gè)“理想數(shù)據(jù)”試確定銷售單價(jià)分別為4,5,6時(shí)有哪些是“理想數(shù)據(jù)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時(shí), ;
(Ⅲ)確定實(shí)數(shù)的值,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率是,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),當(dāng)直線與軸平行時(shí),直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時(shí),總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:,直線l:.
Ⅰ求證:直線l與圓C必相交;
Ⅱ求直線l被圓C截得的弦長(zhǎng)最短時(shí)直線l的方程以及最短弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=120°,對(duì)角線AC與BD交于點(diǎn)O,M為OC中點(diǎn).
(1)求證:BD⊥PM
(2)若二面角O﹣PM﹣D的正切值為2 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說(shuō)法正確的是( )
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)是偶函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com