【題目】對于集合和常數(shù),定義:為集合相對的“余弦方差”.

(1)若集合,,求集合相對的“余弦方差”;

(2)求證:集合相對任何常數(shù)的“余弦方差”是一個(gè)與無關(guān)的定值,并求此定值;

(3)若集合,,相對任何常數(shù)的“余弦方差”是一個(gè)與無關(guān)的定值,求出、.

【答案】(1);(2)證明見解析,定值;(3),

【解析】

余弦方差”的定義,對(1)(2)(3)逐個(gè)求解或證明即可.

(1)依題意:;

(2)由“余弦方差”定義得:,

則分子

為定值,與的取值無關(guān).

(3)

分子

.

要使是一個(gè)與無關(guān)的定值,,

,

終邊關(guān)于軸對稱或關(guān)于原點(diǎn)對稱,

,

終邊只能關(guān)于軸對稱,

,

,,

則當(dāng)時(shí),;

當(dāng)時(shí),.

,,.

,,時(shí),相對任何常數(shù)的“余弦方差”是一個(gè)與無關(guān)的定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的離心率為2,焦點(diǎn)到漸近線的距離等于,過右焦點(diǎn)F2的直線l交雙曲線于A,B兩點(diǎn),F1為左焦點(diǎn).

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市周年慶典,設(shè)置了一項(xiàng)互動(dòng)游戲如圖,一個(gè)圓形游戲轉(zhuǎn)盤被分成6個(gè)均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤,轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),箭頭所指區(qū)域的數(shù)字就是每次游戲所得的分?jǐn)?shù)(箭頭指向兩個(gè)區(qū)域的邊界時(shí)重新轉(zhuǎn)動(dòng)),且箭頭指向每個(gè)區(qū)域的可能性都是相等的.要求每個(gè)家庭派一名兒童和一位成人先后各轉(zhuǎn)動(dòng)一次游戲轉(zhuǎn)盤,記為,若一個(gè)家庭總得分,假設(shè)兒童和成人的得分互不影響,且每個(gè)家庭只能參加一次活動(dòng),游戲規(guī)定:

①若,則該家庭可以獲得一等獎(jiǎng)一份;

②若,則該家庭可以獲得二等獎(jiǎng)一份;

,則該家庭可以獲得紀(jì)念獎(jiǎng)一份.

(1)求一個(gè)家庭獲得紀(jì)念獎(jiǎng)的概率;

(2)試比較同一個(gè)家庭獲得一等獎(jiǎng)和二等獎(jiǎng)概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)求函數(shù)上的最小值(為自然對數(shù)的底數(shù));

(3)是否存在實(shí)數(shù),使得對任意正實(shí)數(shù)均成立?若存在,求出所有滿足條件的實(shí)數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2018·郴州期末]已知三棱錐中,垂直平分,垂足為,是面積為的等邊三角形,,平面,垂足為為線段的中點(diǎn).

(1)證明:平面;

(2)求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘福’字”和“參與螞蟻森林”兩種方式獲得?ǎ◥蹏、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

參考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在R上的偶函數(shù),當(dāng)時(shí), .

1)求的解析式;并畫出簡圖;

2)利用圖象討論方程的根的情況。(只需寫出結(jié)果,不要解答過程)

3)若直線與函數(shù)的圖像自左向右依次交于四個(gè)不同點(diǎn) A,B,C,D .AB=BC,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時(shí)間t(小時(shí))之間近似滿足如圖所示的曲線.

(1)寫出第一次服藥后,y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);

(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于0.25微克時(shí),治療有效.求服藥一次后治療有效的時(shí)間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案