14.直線l與拋物線y2=8x交于A、B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為2,則l的斜率等于( 。
A.1B.2C.3D.4

分析 直線y=kx+b代入拋物線y2=8x,消去y,可得一元二次方程,利用線段AB的中點(diǎn)的縱坐標(biāo)為2,結(jié)合韋達(dá)定理,即可求出k的值.

解答 解:直線y=kx+b代入拋物線y2=8x,消去y可得k2x2+(2kb-8)x+b2=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{8-2kb}{{k}^{2}}$,
∵線段AB的中點(diǎn)的縱坐標(biāo)為2,
∴y1+y2=4,
∴k(x1+x2)+2b=4,
∴k•$\frac{8-2kb}{{k}^{2}}$+2b=4
∴k=2,
故選B.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,具體涉及到拋物線的性質(zhì)、韋達(dá)定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知ABC-A1B1C1為直三棱柱,AB⊥BC,AA1=AB=BC,連接AB1交A1B于點(diǎn)E,
(1)求證:AE⊥A1C
(2)若A1A=2,求E到平面A1AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=x3-4x-a,0<a<2.若f(x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則( 。
A.x1<-2B.x2>0C.x3<1D.x3>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用與球心距離為1的平面去截球,所得截面圓的面積為π,則球的表面積為( 。
A.$\frac{8π}{3}$B.$\frac{32π}{3}$C.D.$\frac{8\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以拋物線x2=4y的焦點(diǎn)F為圓心的圓交拋物線于A、B兩點(diǎn),交拋物線的準(zhǔn)線于C、D兩點(diǎn),若四邊形ABCD是矩形,則圓的方程為(  )
A.x2+(y-1)2=3B.x2+(y-1)2=4C.x2+(y-1)2=12D.x2+(y-1)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xoy中,已知拋物線C:y2=ax(a>0)上一點(diǎn)M(x0,4)到焦點(diǎn)F的距離|MF|=$\frac{5}{4}$x0,直線l與拋物線C相交于不同的A,B兩點(diǎn),如果$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)證明:直線l必過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.關(guān)于x的方程$\sqrt{3}$cosx+sinx-a=0在區(qū)間[0,π]上恰有兩個(gè)不等實(shí)根α,β,則α+β的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)為f′(x)的部分值如表所示:
x-20138
f′(x)-10680-90
根據(jù)表中數(shù)據(jù),回答下列問題:
(Ⅰ)實(shí)數(shù)c的值為6;當(dāng)x=3時(shí),f(x)取得極大值(將答案填寫在橫線上).
(Ⅱ)求實(shí)數(shù)a,b的值.
(Ⅲ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)正項(xiàng)數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{1}{1+an}$,n∈N*
(1)證明:若an<$\frac{\sqrt{5}-1}{2}$,則an+1>$\frac{\sqrt{5}-1}{2}$;
(2)回答下列問題并說明理由:
是否存在正整數(shù)N,當(dāng)n≥N時(shí)|an-$\frac{\sqrt{5}-1}{2}$|+|an+1-$\frac{\sqrt{5}-1}{2}$|<0.001恒成立?

查看答案和解析>>

同步練習(xí)冊(cè)答案