【題目】設全集為R,.
(1)求及
(2)若,求實數a的取值范圍.
【答案】(1)A∩B={x|3<x≤5},R(A∩B)={x|x≤3或x>5},
(2)(﹣∞,]∪[6,+∞)
【解析】
(1)由A={x|2<x≤5},B={x|3<x<8},能求出A∩B及R(A∩B).
(2)由A∩B={x|3<x≤5},(A∩B)∩C=,當C=時,a﹣1≥2a,當C≠時,或,由此能求出實數a的取值范圍.
(1)因為A={x|2<x≤5},B={x|3<x<8},
所以A∩B={x|3<x≤5},
R(A∩B)={x|x≤3或x>5}.
(2)因為A∩B={x|3<x≤5},(A∩B)∩C=,
當C=時,a﹣1≥2a,解得a≤﹣1;
當C≠時,或,
解得﹣1<a或a≥6.
綜上,實數a的取值范圍是(﹣∞,]∪[6,+∞).
科目:高中數學 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調查的女生中有5名數學系的學生,其中3名對冰球有興趣,現(xiàn)在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象過點
(1)求的解析式;
(2)求函數的單調遞增區(qū)間;
(3)將函數的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數的圖象,若關于的方程,在區(qū)間上有且只有一個實數解,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網大會中, 為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有
A.種B.種
C.種D.種
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com