【題目】如圖是根據(jù)某行業(yè)網(wǎng)站統(tǒng)計的某一年1月到12月(共12個月)的山地自行車銷售量(代表1000輛)折線圖,其中橫軸代表月份,縱軸代表銷售量,由折線圖提供的數(shù)據(jù)回答下列問題:
(1)在一年中隨機取一個月的銷售量,估計銷售量不足的概率;
(2)在一年中隨機取連續(xù)兩個月的銷售量,估計這連續(xù)兩個月銷售量遞增(如2月到3月遞增)的概率;
(3)根據(jù)折線圖,估計年平均銷售量在哪兩條相鄰水平平行線線之間(只寫出結(jié)果,不要過程)
【答案】(1)(2)(3)在這兩條水平線之間
【解析】
(1)設(shè)銷售量不足為事件,這一年共有12個月,利用列舉法能求出銷售量不足的概率.
(2)設(shè)連續(xù)兩個月銷售量遞增為事件,利用列舉法能求出這連續(xù)兩個月銷售量遞增(如2月到3月遞增)的概率.
(3)由折線圖,估計年平均銷售量在這兩條水平線之間.
解:(1)設(shè)銷售量不足為事件,
這一年共有12個月,
其中1月,2月,6月,11月共4個的銷售量不足,
所以.
(2)設(shè)連續(xù)兩個月銷售量遞增為事件,
在這一年中隨機取連續(xù)兩個月的銷售量,
有1,2月;2,3月;3,4月;4,5月;5,6月;6,7月;7,8月;8,9月;9,10月;10,11月;11,12月共11種取法,
其中2,3月,3,4月;4,5月;6,7月;7,8月;8,9月;
11,12月共7種情況的銷售量遞增,
所以.
(3)由折線圖,年平均銷售量在這兩條水平線之間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的左焦點作圓的切線交雙曲線的右支于點,且切點為,已知為坐標(biāo)原點,為線段的中點(點在切點的右側(cè)),若的周長為,則雙曲線的漸近線的方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B是拋物線C:y2=4x上兩點,線段AB的垂直平分線與x軸有唯一的交點P(x0,0).
(1)求證:x0>2;
(2)若直線AB過拋物線C的焦點F,且|AB|=10,求|PF|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月份鄭州市進行了高三學(xué)生的體育學(xué)業(yè)水平測試,為了考察高中學(xué)生的身體素質(zhì)比情況,現(xiàn)抽取了某校1000名(男生800名,女生200名)學(xué)生的測試成績,根據(jù)性別按分層抽樣的方法抽取100名進行分析,得到如下統(tǒng)計圖表:
男生測試情況:
抽樣情況 | 病殘免試 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
人數(shù) | 5 | 10 | 15 | 47 |
女生測試情況
抽樣情況 | 病殘免試 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
人數(shù) | 2 | 3 | 10 | 2 |
(1)現(xiàn)從抽取的1000名且測試等級為“優(yōu)秀”的學(xué)生中隨機選出兩名學(xué)生,求選出的這兩名學(xué)生恰好是一男一女的概率;
(2)若測試等級為“良好”或“優(yōu)秀”的學(xué)生為“體育達人”,其它等級的學(xué)生(含病殘免試)為“非體育達人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下認(rèn)為“是否為體育達人”與性別有關(guān)?
男性 | 女性 | 總計 | |
體育達人 | |||
非體育達人 | |||
總計 |
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:( ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】去年年底,某商業(yè)集團公司根據(jù)相關(guān)評分細(xì)則,對其所屬25家商業(yè)連鎖店進行了考核評估.將各連鎖店的評估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標(biāo)準(zhǔn)如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計該商業(yè)集團各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,21時29分食甚,22時07分生光,23時11分復(fù)圓.月全食伴隨有藍(lán)月亮和紅月亮,全食階段的“紅月亮”在食既時刻開始,生光時刻結(jié)束.小明準(zhǔn)備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若,函數(shù)的極大值為,求實數(shù)的值;
(Ⅱ)若對任意的 在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團體決賽中,中國隊與韓國隊相遇,中國隊男子選手A,B,C,D,E依次出場比賽,在以往對戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨立.賽會釆用5局3勝制,先贏3局者獲得勝利.
(1)在決賽中,中國隊以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊半圓形的空地,直徑米,政府計劃在空地上建一個形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設(shè).
(1)記花圃的面積為,求的最大值;
(2)若花圃的造價為10元/米,在花圃的邊、處鋪設(shè)具有美化效果的灌溉管道,鋪設(shè)費用為500元/米,兩腰、不鋪設(shè),求滿足什么條件時,會使總造價最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com