【題目】在等腰直角三角形中,,點是邊上異于的一點,光線從點出發(fā),經(jīng)反射后又回到原點,光線經(jīng)過的重心.
(1)建立適當?shù)淖鴺讼,請?/span>的重心的坐標;
(2)求點的坐標;
(3)求的周長及面積.
【答案】(1)坐標系見解析,;(2);(3);
【解析】
(1)以為原點,為軸,為軸建立直角坐標系,依次寫出的坐標,由重心公式求得重心即可;
(2)由光的反射具有對稱性,作關(guān)于的對稱點,關(guān)于的對稱點,則四點共線,設(shè),根據(jù)對稱性可得,,且在直線上,解出方程并將點坐標代入即可求得,進而得到的坐標;
(3)由(2), 的周長轉(zhuǎn)化為的長,利用割補法將的面積轉(zhuǎn)化為的面積與的面積的差計算即可
(1)以為原點,為軸,為軸建立直角坐標系,則,,,
所以根據(jù)重心公式可得重心為,即
(2)作關(guān)于的對稱點,關(guān)于的對稱點,由于光的反射原理,四點共線,
因為過重心,所以過重心,
設(shè),則,
因為,,所以直線為:,
設(shè),則,所以 ,即
則直線為,
由(1),代入點,即,
所以或,
因為異于,
所以點為
(3)由(2),,,
由于對稱性,則的周長為:,
直線為,即,
當時,,則
聯(lián)立,解得,則,
所以的面積為:
科目:高中數(shù)學 來源: 題型:
【題目】下列有關(guān)平面向量分解定理的四個命題:
(1)一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
(2)一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.
其中正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點, 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù)(其中常數(shù)).
(Ⅰ)求函數(shù)的定義域及單調(diào)區(qū)間;
(Ⅱ)若存在實數(shù),使得不等式成立,求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABD﹣A1B1C1D1中四邊形A1B1C1D1,ADD1A1.ABB1A1均為正方形.點M是BD的中點.點H在線段C1M上,且A1H與平面ABD所成角的正弦值為.
(Ⅰ)證明:B1D1∥平面BC1D:
(Ⅱ)求二面角A﹣A1H﹣B的的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下三個命題:
①若,則;
②在中,若,則;
③在一元二次方程中,若,則方程有實數(shù)根.
其中原命題、逆命題、否命題、逆否命題均為真命題的是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)P是橢圓上一點,M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中,,,,點在上,且.
(1)證明:面;
(2)在棱上是否存在一點,使三棱錐是正三棱錐?證明你的結(jié)論.
(3)求以為棱,與為面的二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com