【題目】已知直線,,,記,,.
(1)當(dāng)時(shí),求原點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo);
(2)在中,求邊上中線長(zhǎng)的最小值;
(3)求面積的取值范圍.
【答案】(1)(2)最小值為.(3)
【解析】
(1)當(dāng)時(shí),直線,設(shè)原點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,利用 斜率與中點(diǎn)坐標(biāo)公式列方程求解即可;(2)先證明,可得為直角三角形,則中線長(zhǎng)為,再求得與的交點(diǎn),與的交點(diǎn),利用兩點(diǎn)間的距離公式,結(jié)合二次函數(shù)的性質(zhì)可得結(jié)果;(3)求得與交點(diǎn)的坐標(biāo),可得,再求得
點(diǎn)到距離,則三角形面積 ,分類討論,利用基本不等式可得結(jié)果.
(1)當(dāng)時(shí),直線,
設(shè)原點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,則解得
故所求點(diǎn)的坐標(biāo)為.
(2)法一:由,得,
故為直角三角形,且為斜邊,中線長(zhǎng)為,
由,得與的交點(diǎn),
由,得與的交點(diǎn),
故中線長(zhǎng),即當(dāng)時(shí),中線長(zhǎng)有最小值為.
法二:因?yàn)辄c(diǎn)是軸上動(dòng)點(diǎn),所以當(dāng)垂直軸時(shí)最短,
此時(shí)中線長(zhǎng)最小值為.
(3)由,得與交點(diǎn),
由兩點(diǎn)間距離公式得,
點(diǎn)到距離,
三角形面積 ,
當(dāng)時(shí),;
當(dāng)時(shí);
當(dāng)時(shí).
所以,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)=λ·2ax-4x的定義域?yàn)?/span>[0,2].
(1)求a的值;
(2)若函數(shù)g(x)在[0,2]上單調(diào)遞減,求λ的取值范圍;
(3)若函數(shù)g(x)的最大值是,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 總計(jì) | |
男性市民 | |||
女性市民 | |||
總計(jì) |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=|x+1|+|2x+a|的最小值為3,則實(shí)數(shù)a的值為( )
A.5或8
B.﹣1或5
C.﹣1或﹣4
D.﹣4或8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)不相等的非零向量 , ,兩組向量 , , , , 和 , , , , 均由2個(gè) 和3個(gè) 排列而成,記S= + + + + ,Smin表示S所有可能取值中的最小值.則下列命題正確的是(寫(xiě)出所有正確命題的編號(hào)).
①S有5個(gè)不同的值;
②若 ⊥ ,則Smin與| |無(wú)關(guān);
③若 ∥ ,則Smin與| |無(wú)關(guān);
④若| |>4| |,則Smin>0;
⑤若| |=2| |,Smin=8| |2 , 則 與 的夾角為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)圓是以為直徑的圓,一直線與之相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng)且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過(guò)A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)求此四棱柱被平面α所分成上下兩部分的體積之比;
(3)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)線性回歸分析的四個(gè)命題:
①線性回歸直線必過(guò)樣本數(shù)據(jù)的中心點(diǎn)();
②回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線;
③當(dāng)相關(guān)性系數(shù)時(shí),兩個(gè)變量正相關(guān);
④如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于.
其中真命題的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)袋子中裝有a個(gè)紅球,b個(gè)黃球,c個(gè)藍(lán)球,且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球2分,取出藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中任。ㄓ蟹呕,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此2球所得分?jǐn)?shù)之和.求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若 ,求a:b:c.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com