【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

總計

男性市民

女性市民

總計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān)?請說明理由.

【答案】(1)見解析;(2)能在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān).

【解析】分析:(1)根據(jù)條件中所給的數(shù)據(jù),列出列聯(lián)表,填上對應(yīng)的數(shù)據(jù),得到列聯(lián)表;

(2)根據(jù)(1)做出的列聯(lián)表,把求得的數(shù)據(jù)代入求觀測值的公式求出觀測值,把觀測值同臨界值進(jìn)行比較得到結(jié)論.

詳解:(1)

支持

不支持

總計

男性市民

女性市民

總計

(2)因為的觀測值 ,

所以能在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5 , 則lna1+lna2+…lna20=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在,使成立,則稱的不動點.已知函數(shù) .

1)當(dāng)時,求函數(shù)的不動點;

2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;

3)在(2)的條件下,若的兩個不動點為,,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報文科理科的情況如下表所示.

文科

2

5

理科

10

3

(1)若在該樣本中從報考文科的女學(xué)生A.B.C.D.E中隨機(jī)地選出2人召開座談會,試求2人中有A的概率;

(2)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?

參考公式和數(shù)據(jù):.

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是(

A.34
B.55
C.78
D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

總計

男性市民

女性市民

總計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān)?請說明理由.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,,記,.

(1)當(dāng)時,求原點關(guān)于直線的對稱點坐標(biāo);

(2)在中,求邊上中線長的最小值;

(3)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

同步練習(xí)冊答案