【題目】若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5 , 則lna1+lna2+…lna20=

【答案】50
【解析】解:∵數(shù)列{an}為等比數(shù)列,且a10a11+a9a12=2e5 ,
∴a10a11+a9a12=2a10a11=2e5 ,
則a10a11=e5 ,
∴l(xiāng)na1+lna2+…lna20=
=ln(e510=lne50=50.
所以答案是:50.
【考點精析】本題主要考查了對數(shù)的運算性質和等比數(shù)列的基本性質的相關知識點,需要掌握①加法:②減法:③數(shù)乘:;{an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】π為圓周率,e=2.71828…為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)= 的單調區(qū)間;
(2)求e3 , 3e , eπ , πe , 3π , π3這6個數(shù)中的最大數(shù)和最小數(shù);
(3)將e3 , 3e , eπ , πe , 3π , π3這6個數(shù)按從小到大的順序排列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線(b>a>0),O為坐標原點,離心率,點在雙曲線上.

(1)求雙曲線的方程;

(2)若直線與雙曲線交于P、Q兩點,且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,F(xiàn)E∥CD,交PD于點E.

(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某學校準備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設米,已知圍墻(包括EF)的修建費用均為每米500元,設圍墻(包括EF)的修建總費用為y元.

(1)求出y關于x的函數(shù)解析式及x的取值范圍;

(2)當x為何值時,圍墻(包括EF)的修建總費用y最。坎⑶蟪鰕的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)·2ax-4x的定義域為[0,2].

(1)a的值;

(2)若函數(shù)g(x)[0,2]上單調遞減,λ的取值范圍;

(3)若函數(shù)g(x)的最大值是,λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市某機構為了調查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調查,調查結果統(tǒng)計如下:

支持

不支持

總計

男性市民

女性市民

總計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過的前提下認為支持申辦年足球世界杯與性別有關?請說明理由.

查看答案和解析>>

同步練習冊答案