【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過(guò)濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過(guò)濾器采用并聯(lián)安裝,再與一級(jí)過(guò)濾器串聯(lián)安裝.
其中每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn)在使用過(guò)程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過(guò)程中單獨(dú)購(gòu)買(mǎi)濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的條形圖.
表1:一級(jí)濾芯更換頻數(shù)分布表
一級(jí)濾芯更換的個(gè)數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級(jí)濾芯更換頻數(shù)條形圖
以100個(gè)一級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)一級(jí)過(guò)濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)二級(jí)過(guò)濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
【答案】(1)0.024;(2)分布列見(jiàn)解析,;(3)
【解析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;
(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;
(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.
(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16”為事件,
因?yàn)橐粋(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,所以.
(2)由柱狀圖知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,
從而,
,
.
所以的分布列為
8 | 9 | 10 | 11 | 12 | |
0.04 | 0.16 | 0.32 | 0.32 | 0.16 |
(個(gè)).
或用分?jǐn)?shù)表示也可以為
8 | 9 | 10 | 11 | 12 | |
(個(gè)).
(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)各級(jí)濾芯所需總費(fèi)用(單位:元)
因?yàn)?/span>,且,
1°若,則,
(元);
2°若,則,
(元).
因?yàn)?/span>,故選擇方案:.
解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)一級(jí)濾芯和二級(jí)濾芯所需費(fèi)用(單位:元)
1°若,則,
的分布列為
1280 | 1680 | |
0.6 | 0.4 | |
880 | 1080 | |
0.84 | 0.16 |
該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)的各級(jí)濾芯所需總費(fèi)用為(元);
2°若,則,
的分布列為
800 | 1000 | 1200 | |
0.52 | 0.32 | 0.16 |
(元).
因?yàn)?/span>
所以選擇方案:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在處取得極值,求的值;
(2)求在區(qū)間上的最小值;
(3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?
(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專(zhuān)項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過(guò)自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過(guò)畫(huà)散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)
(2)若已知該校2019年通過(guò)自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該校考人名校的人數(shù);
(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.
參考公式:,
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說(shuō)法正確的是( )
A.無(wú)論點(diǎn)在上怎么移動(dòng),都有
B.當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有與相交于一點(diǎn),記為點(diǎn),且
C.無(wú)論點(diǎn)在上怎么移動(dòng),異面直線與所成角都不可能是
D.當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).
(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、是兩個(gè)不同的平面,點(diǎn)、,、,下列命題中正確的是( )
A.若,,則,
B.若,,則,
C.若,,,則、,
D.若,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn).
(1)求的取值范圍;
(2)是否存在實(shí)數(shù), 對(duì)于符合題意的任意,當(dāng) 時(shí)均有?
若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鮮花店根據(jù)以往某品種鮮花的銷(xiāo)售記錄,繪制出日銷(xiāo)售量的頻率分布直方圖,如圖所示.將日銷(xiāo)售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷(xiāo)售量相互獨(dú)立.
(1)求在未來(lái)的連續(xù)4天中,有2天的日銷(xiāo)售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來(lái)4天里日銷(xiāo)售量不低于100枝的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com