點(diǎn)M(x,y)到定點(diǎn)F(5,0)的距離和它到定直線l:x=
9
5
的距離的比是常數(shù)
5
3
,求點(diǎn)M的軌跡.
分析:直接利用求軌跡方程的步驟列出點(diǎn)M的集合,代入坐標(biāo)后整理即可得到答案.
解答:解:設(shè)d是點(diǎn)M到定直線l:x=
9
5
的距離,則d=|x-
9
5
|,
依題,點(diǎn)M的軌跡就是集合P={M|
|MF|
d
=
5
3
},
由此得  
(x-5)2+y2
|x-
9
5
|
=
5
3

化簡(jiǎn)整理得:
x2
9
-
y2
16
=1
為點(diǎn)M的軌跡方程.
點(diǎn)評(píng):本題考查了軌跡方程的求法,考查了拋物線的定義,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)點(diǎn)M到點(diǎn)F(2,0)的距離比它到直線x=-3的距離小1,求點(diǎn)M滿足的方程.
(2)曲線上點(diǎn)M(x,y)到定點(diǎn)F(2,0)的距離和它到定直線x=8的距離比是常數(shù)2,求曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)F1(-1,0)與到定點(diǎn)F2(1,0)的距離之比為3.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程,并指明曲線C的軌跡;
(Ⅱ)設(shè)直線l:x=x+b,若曲線C上恰有兩個(gè)點(diǎn)到直線l的距離為1,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)點(diǎn)M(x,y)到定點(diǎn)F(-1,0)的距離與到y(tǒng)軸的距離之差為1.
(I)求動(dòng)點(diǎn)M的軌跡C的方程;
(II)過點(diǎn)Q(-3,0)的直線l與曲線C交于A、B兩點(diǎn),問直線x=3上是否存在點(diǎn)P,使得△PAB是等邊三角形?若存在,求出所有的點(diǎn)P;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)(2,0)的距離比到直線x=-3的距離少1,則動(dòng)點(diǎn)M的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案