【題目】用兩種顏色去染正九邊形的頂點(diǎn),每個(gè)頂點(diǎn)只染一種顏色,證明在以這9點(diǎn)為頂點(diǎn)的所有三角形中,一定有兩個(gè)頂點(diǎn)同色的全等三角形.

【答案】見解析

【解析】

至少有5個(gè)頂點(diǎn)涂以同色,不妨設(shè)為白色,這5個(gè)白點(diǎn)生成了個(gè)白色頂點(diǎn)的三角形.若繞正九邊形的中心旋轉(zhuǎn),,則每次旋轉(zhuǎn)九個(gè)頂點(diǎn)都與原有的頂點(diǎn)集合不變,但9次旋轉(zhuǎn)白色頂點(diǎn)的共生成90個(gè),而9個(gè)頂點(diǎn)共形成個(gè)三角形.

設(shè)原有頂點(diǎn)生成的三角形的集合為,則,其中5個(gè)頂點(diǎn)染自色,它們所生成的三角形,再經(jīng)9次旋轉(zhuǎn)之后,所生成的三角形的集合為,則.由于,且每個(gè)白色頂點(diǎn)三角形經(jīng)9次旋轉(zhuǎn)占有9個(gè)不同的位置,所以一定有兩個(gè)白色頂點(diǎn)的三角形在旋轉(zhuǎn)的過(guò)程中都與中的某一三角形重合.即存在,,有,,所以。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員毎次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算機(jī)產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定13,4表示命中,5,6,7,89,0表示不命中;再以三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某山區(qū)小學(xué)有100名四年級(jí)學(xué)生,將全體四年級(jí)學(xué)生隨機(jī)按00-99編號(hào),并且按編號(hào)順序平均分成10組,現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加10進(jìn)行系統(tǒng)抽樣.

1)若抽出的一個(gè)號(hào)碼為22,則此號(hào)碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;

2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)的莖葉圖如圖所示,這10名學(xué)生中隨機(jī)抽取兩名成績(jī)不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績(jī)之和不小于154的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線,過(guò)拋物線上一點(diǎn)作兩條直線與分別相切于兩點(diǎn),分別交拋物線于兩點(diǎn).

(1)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;

(2)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)m,)的圖像關(guān)于原點(diǎn)對(duì)稱,且.

1)求函數(shù)的解析式;

2)判定函數(shù)在區(qū)間的單調(diào)性并用單調(diào)性定義進(jìn)行證明;

3)求函數(shù)在區(qū)間)內(nèi)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在點(diǎn)處的切線方程為

1)求函數(shù)的解析式.

2)若方程個(gè)不同的根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為(x-12+y-12=9,P22)是該圓內(nèi)一點(diǎn),過(guò)點(diǎn)P的最長(zhǎng)弦和最短弦分別為ACBD,則四邊形ABCD的面積是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知).

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列滿足:,

求數(shù)列的通項(xiàng)公式;

是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若,求的單調(diào)區(qū)間;

2)若有最大值3,求的值.

3)若的值域是,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案